Planning with slides and videos

Program

Monday April 15

08h30 - 10h00    Welcome coffee and registration

10h00 - 10h30    Introduction: Program of the school

10h30 - 12h30    Basics of machine learning - Part 1, Part 2, Part 3 and Part 4
14h00 - 16h00  Nicolas Duchateau - Creatis, Lyon  /  Rémi Emonet - LabHC, Saint-Etienne  / Carole Lartizien - Creatis, Lyon

Video P1 Basic Learning 1 Carole Lartizien and Rémi Emonet

Video P2 Basic Learning 2 - Nicolas Duchateau

16h30 - 17h30    Learning with less labels in medical image analysis (canceled)
                               Veronika Cheplygina - Eindhoven University of Technology, The Netherlands

 17h30 - 18h30    Round table: Needs of clinicians, researchers and industrials
                                Pierre-Marc Jodoin (University of Sherbrooke), Loïc Boussel (HCL), Benoit Gallix (IHU Strasbourg), Pierre Croisille (UJM & CHUSE), Nicolas Villain (Philips) and Christophe Avare (Olea Medical)

Moderator: Paul De Brem

Video P3 Table Ronde: Needs of clinicians, researchers and industrials

18h30 - 19h30    Conference - Demystification of AI-driven medical image interpretation: past, present and future
                              Benoit Gallix, IHU Strasbourg

Video P4 Demystification of IA - Benoit Gallix

20h00 - 22h00    Convivial evening on the campus at the Supr'M

Tuesday April 16

9h00 - 10h30    Basics in deep learning - Part 1 and Part-2: Perceptron, Stochastic Gradient Descent, Learning rate, Logistic regression, Cross-entropy, Multi-layer Perceptron, Activation functions, Multi-Class Perceptron
                            Pierre-Marc Jodoin - University of Sherbrooke, Canada
                            Christian Desrosiers - Ecole de Technologie Supérieure, Canada

Video P5 Basic Deep Learning Pierre Marc Jodoin Part I

10h30 - 11h00   Coffee break

11h00 - 12h30   Basics in deep learning - Part 2: Forward pass and Back propagation, Batch size, Feature maps (architecture selection), Convolution neural nets (CNN) - Properties, advantages, applications, Pooling functions
                            Pierre-Marc Jodoin - University of Sherbrooke, Canada
                            Christian Desrosiers - Ecole de Technologie Supérieure, Canada

Video P6 Basic Deep Learning Pierre Marc Jodoin Part II

12h30 - 14h00   Lunch break - Sogeres restaurant

14h00 - 18h00   Hands-on session: classification from cardiac shape data
                              Nicolas Duchateau - Creatis, Lyon

Format: python/ jupyter notebook

Data: set of 2D myocardial shapes from 101 subjects at end-diastole and end-systole, partially pre-processed to manually extract features of interest. Labels are either healthy or diseased, and are unknown for 30 subjects.

Content: test classifiers from scikit-learn to label the unknown cases. We will carefully evaluate the learning performance keeping an eye on the initial data and the extracted features.

20h00 - 22h00 Poster session open to everyone (participants and speakers) - buffet

Wednesday April 17

9h00 - 10h30    Advanced concepts in deep learning
                            Pierre-Marc Jodoin - University of Sherbrooke, Canada
                            Christian Desrosiers - Ecole de Technologie Supérieure, Canada

Video P7 Advanced Deep Learning Christian Desrosiers

10h30 - 11h00   Coffee break

11h00 - 12h30  Deep learning in cardiovascular applications - second part
                            Ozan Oktay - Imperial College London, UK           

Video P8 Deep Learning Cardiovascular Ozan Oktay

12h30 - 14h00   Lunch break - Sogeres restaurant

14h00 - 18h00   Hands-on session: Automatic segmentation of 2D echocardiographic images by deep learning
                              Sarah Leclerc - Creatis, Lyon
                              Olivier Bernard - Creatis, Lyon
                              Ozan Oktay - Imperial College London, UK

Format: python/ Jupyter Notebook

Data: database from 500 patients of 2D sequences (from two different orientations) named CAMUS database. This database is public and we will be able to use it (and promote it) during the school.

Content: implement step by step a convolutional neural network (U-net) to automatically segment 2D echocardiographic sequences (both 2 chamber and 4 chamber view orientations).

20h00 - 22h00   Evening in Lyon

Thursday April 18

9h00 - 10h30    Weakly supervised and disentangling
                            Nicolas Thome - CNAM, Paris

Video P9 Weakly Supervised Nicolas Thome

10h30 - 11h00   Coffee break

11h00 - 12h30  Generative adversarial networks for medical imaging
                             Anirban Mukhopadhyay - Technische Universität Darmstadt, Germany     

Video P10 Generative Networks Medical Anirban Mukhopadhyay

12h30 - 14h00   Lunch break - Sogeres restaurant

14h00 - 18h00   Hands-on session: Medical image reconstruction by deep learning
                              Dimitris Perdios - Ecole Polytechnique Fédérale de Lausanne, Switzerland
                              Thomas Grenier, Creatis, Lyon
                              Olivier Bernard, Creatis, Lyon

Format: python/ Jupyter Notebook

Data:

1) training and validation sets generated using a physical ultrasound simulator.

2) test set, from the PICMUS challenge, composed of in-vitro and in-vivo data acquired using the Verasonics® Vantage™ Research System.

Content: Adapt the popular U-Net architecture for the purpose of image reconstruction. Learn to reconstruct high-quality ultrasound images from data acquired at high frame rate with poor image quality

20h00 - 22h00   Gala dinner on a boat

Friday April 19

09h30 - 11h00   Deep learning in neuroimaging
                              Michaël Sdika - Creatis, Lyon

11h00 - 11h30   Coffee break

11h30 - 12h20   Conclusion and discussion with particpants

12h20 - 14h00   Lunch break -Sogeres restaurant

14h00 - 18h00   Hands-on session: which programming for deep learning?
                              Fabien Millioz - Creatis, Lyon
                              Thomas Grenier - Creatis, Lyon

Format: python/ Jupyter Notebook

Data: 2D images from MRIs and CT

Content: compare same neural network implemented on different frameworks (pyTorch/TensorFlow) on basic classification task. Back home with good practices and compare results!

Personnes connectées : 1