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1. Introduction

Scientific and medical context

Genetic

Sensors IoT

Biomarkers

Multi-modality
Imaging

Precision medicine Image-based pathology
characterization

Machine learning

• Refine Diagnosis
• Improve therapy planning 
• Predict therapy outcome
• Develop preventive medicine.

Epilepsy lesion detection

Lymphoma screening in whole-
body PET imaging

1. Introduction

From imaging data to wisdom

Multi-modality imaging

Pixel based feature extraction (texture, 
quantitative or semi-quantitative, gradient..)

Segmentation, detection, classification

Diagnostic and
Prognostic models

Diagnostic and
Prognostic models

Region based feature extraction 
(texture, quantitative or semi-

quantitative,gradient + geometric ..)

Radiomic

WISDOM

KNOWLEDGE

INFORMATION

DATA

2

Example 1 = Automatic segmentation?
Example 2 = Differences between healthy and…?
Example 3 = Predict infarct location from myocardial deformation?
Example 4 = Detect outliers in a coherent population?

Déformation (strain)

??
?

Lésion

+
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1. Introduction

Machine learning for medical 
image analysis

Multi-modality imaging

Pixel based feature extraction (texture, 
quantitative or semi-quantitative, gradient..)

Segmentation, detection, classification

Diagnostic and
Prognostic models

Diagnostic and
Prognostic models

Region based feature extraction 
(texture, quantitative or semi-

quantitative,gradient + geometric..)

Radiomic

WISDOM

KNOWLEDGE

INFORMATION

DATA
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Basics of machine learning

1. Define a task T

2. Formulate this task as a decision model

3. Learn the decision model based on samples (Data D) and a 
performance metric P

4. Infer decision from this model on new samples

1. Introduction

1. Task definition

o Detect lesions on brain T1 MRI

Basics of machine learning

2. Problem formulation as a decision task

o Decide whether each voxel of the 
brain MR scan is a ‘lesion’ or 
‘normal tissue’

 Binary classification problem

o Depending on  the available
samples, consider this problem as 

 supervised, 

 unsupervised or 

 weakly supervised learning

1. Introduction

Basics of machine learning …

Classification
Feature 

extraction

2.     Problem formulation within the statistical decision framework

input Reference

1. Introduction

Design your model :

o Which features ?

o Which classifier model?

→ Binary supervised
classification problem

Basics of machine learning …

Classification
Feature 

extraction

3.     Learn the decision model based on training samples and performance metric

Loss

error+

-

input ReferenceTraining

1. Introduction
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Basics of machine learning …

Classification
Feature 

extraction

4. Infer decision on new samples

1. Introduction

…and deep learning

Classification
Feature 

extraction

Loss

error+

-

input ReferenceTraining

1. Introduction

1. Scientific and medical context

2. Basics of machine learning

3. Some Historical highlights of AI

1. Introduction

1950 2010
GPU
Web database (ImageNet..)

Symbolic AI

1980

human-like intelligence in a machine

Neural networks
SVM
Decision trees…

Machines adapt themselves to data

Expert systems
Perceptron…

Deep Learning

1. Introduction

Artificial Intelligence 

Machine Learning

Connexionist AI

Machines learn to reproduce specific tasks
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1950 2010
GPU
Web database (ImageNet..)

Symbolic AI

1980

human-like intelligence in a machine

Neural networks
SVM
Decision trees…

Machines adapt themselves to data

Expert systems
Perceptron…

Deep Learning

1. Introduction

Artificial Intelligence 

Machine Learning

Connexionist AI

Machines learn to reproduce specific tasks

Machine Learning

1950 2010
GPU
Web database (ImageNet..)

Symbolic AI

1980

human-like intelligence in a machine

Machines learn to reproduce specific tasks

Neural networks
SVM
Decision trees…

Expert systems
Perceptron…

Deep Learning
Machines adapt themselves to data

1. Introduction

Artificial Intelligence 

1. Introduction

Deep learning for medical image analysis

[Litjens, MEDIA 17]
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Carole Lartizien + Rémi Emonet + Nicolas Duchateau
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2. Supervised learning

i. Use case

ii. Standard pipeline

iii. Learning a decision function

iv. Decision model based on the minimization of the 
misclassification error

v. Decision trees

vi. Neural networks

Case study: 

 Material : MRI brain images databases with
hippocampes manually annotated by experts

→ Supervised classification problem

2. Supervised learning

 Problem definition
To automatically segment hippocampe 
in MRI T1 images 

 Problem formulation as a decision
task

Decide whether each voxel belongs to 
the hippocampe structure or not 

→Binary classification problem

Annotated
learning
database

Extract
discriminant
feature from
the raw image

Learn a decision
function

Classe H = hippocampe 

Classe NH = autre 
structure 

2. Supervised learning

Case study: 

Learning database

Feature extraction

Decision function
Classe H

Classe NH 

2. Supervised learning

Case study: 
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2. Supervised learning

i. Use case

ii. Standard pipeline

iii. Learning a decision function

iv. Decision model based on the minimization of the 
misclassification error

v. Decision trees

vi. Neural networks

2. Supervised learning

Feature vector xi ∈ X = ℝd

Label yi ∈ Y = Z

Decision function f(xi)

Preprocessed
Data

Feature 
extraction Classification

2. Supervised learning

Feature vector xi ∈ X = ℝd

Label yi ∈ Y = Z

Decision function f(xi)

Preprocessed
Data

Feature 
extraction Classification

Data ready to be analyzed?

Spatially Temporally

Different: =   normalize first !• sampling
• geometries
• dynamics

Duchateau et al. Med Image Anal 
2011
De Craene et al. ISBI 2012.

2. Supervised learning

Data preprocessing
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2. Supervised learning

Feature vector xi ∈ X = ℝd

Label yi ∈ Y = Z

Decision function f(xi)

Preprocessed
Data

Feature 
extraction Classification

Learning… but on what?

7

Images
• Gray level, texture, …

Shapes
• Geometry (meshes, curvature,…), fibers, …

Functional features
• Global: clinical measurements, outcome, …
• Local: mechanical (motion / deformation), electrical, 

…

Specificities / constraints ?
- Physiology, specific structure 

(manifold)
- 4D (space + time) … or 5D 

(longitudinal data)
- High dimensionality
- Population size: from ~20 to 500+ 

subjects

Gray level Velocities StrainShape Fibers Electrical 
activation

“known” descriptors / features… or to discover automatically ?

2. Supervised learning

Feature extraction

2. Supervised learning

• Raw Image intensity
• First and second order

statistics, eg texture 
parameters

• Histograms

• Semi-quantitative and 
quantitative 
pharmacokinetic
parameters

 This topic will not be covered during this lecture! 

The input object is transformed into a feature vector, which contains a number of features that 
are descriptive of the object.

The number of features should not be too large, because of the curse of dimensionality; but 
should contain enough information to accurately predict the output.

Feature extraction

Data
Feature 

extraction

2. Supervised learning

Feature vector xi ∈ X = ℝd

Label yi ∈ Y = Z

Decision function f(xi)

Données
Feature 

extraction Classification

Learning a decision function in the feature space X = ℝd
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2. Supervised learning

In this lecture, we focus on classification models
To simplify, we consider a binary classification problem

y ∈ R,  Regression

y ∈ N,  Classification

Y=-1 

Y= 1 

x1

x2

Linear classification Linear regression

Classification versus regression

2. Supervised learning

i. Use case

ii. Standard pipeline

iii. Learning a decision function

iv. Decision model based on the minimization of the 
misclassification error

v. Decision trees

vi. Neural networks

● f is an element of some space of possible functions, usually called the hypothesis
space. 

● Usually, the class y is not directly outputted

○ f is either a scoring function eg a signed distance to the hyperplane, 

○ Or f is a probability of x belonging to class y

● The output y is defined by a decision rule applied on the output of the scoring
function

:f X 

:f  X Y 

2. Supervised learning

    D signe fx x

To learn a function f that maps an input x to an output y based on a series of annotated
samples S= {(x1, y1),…(xn, yn)}

Objective

Supervised learning in a nutshell

.

2. Supervised learning

● Split the sample dataset into three parts : a training, a validation and a test dataset

● Choose a parameterized model function with parameters Q1 and hyperparameters
Q2 from an hypothesis space H

● Fit the model parameters Q1 to the training dataset for a fixed value of Q2 

○ Choose an error function that measures the misfit between the  decision
function D(f(xi)) and the class yi of all training data points (xi, yi)

○ Minimize the error function

● Evaluate the performance of your model on the validation dataset

● Retrain your model with another hyperparameter set Q2 

● Select the best parameter set

● Evaluate the performance of your best model on the test dataset
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Supervised learning in a nutshell

.

2. Supervised learning

● Split the sample dataset into three parts : a training, a validation and a test dataset

● Choose a parameterized model function with parameters Q1 and hyperparameters
Q2 from an hypothesis space H

● Fit the model parameters Q1 to the training dataset for a fixed value of Q2 

○ Choose an error function that measures the misfit between the  decision
function D(f(xi)) and the class yi of all training data points (xi, yi)

○ Minimize the error function

● Evaluate the performance of your model on the validation dataset

● Retrain your model with another hyperparameter set Q2 

● Select the best parameter set

● Evaluate the performance of your best model on the test dataset

● Two types of decision models

○ Linear models: linear SVM, logistic regression logistique, Linear discriminant 
analysis

○ Non linear models : neural networks, kernel machine, decision trees

● Different strategies to minimize the error function

○ Global minimization: In the original feature space ℝd

○ Recursive minimisation: based on a recursive method applied in a one-
dimensional space (eg decision trees)

2. Supervised learning

There are different approaches to the classification problem

How to choose and fit the decision function f(x)

● Différents types of  error functions

○ Missclassification Error Risk : 

■ Bayesian classifier, SVM, logisitic regression, neural networks

○ Other functionals:

■ Fisher criterion for discriminant linear analysis (LDA)

■ Entropy for decision trees or neural networks

■ ….

2. Supervised learning

Linear classification task Non linear classification task

Decision tree Naïve Bayes           Logistic regression Neural net     SVM

2. Supervised learning
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2. Supervised learning

Hands-on session = Tuesday

Classification of diseased vs. healthy based on 
cardiac shapes / function

i. Use case

ii. Standard pipeline

iii. Learning a decision function

iv. Decision model based on the minimization of the 
misclassification error

v. Decision trees

vi. Neural networks

2. Supervised learning

Risk minimisation 

         , , ,i i iR f L Y f L y f y d dy


     i i iX x x x 
X Y

Statistical learning theory is based on the notion of risk R also referred to as

prediction error

Parameters of the decision function f for a given classification task are derived from

the minimization of the prediction error between the estimated class labels f(xi) and

the true class labels yi

L(.,.) is a cost function quantifying the cost of the prediction error

is the joint probability of observing xi and yi , yi ix

2. Supervised learning

The decision function f(x) is estimated directly, ie

• Without modeling and estimating the posterior probability densities

• By modeling directly the decision function and estimating the parameters

of this function based on training samples.

2. Supervised learning

Risk minimisation – Discriminative  models
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● As seen above, the minimisation of risk R requires to estimate the joint probability
distribution, which may not be trivial

● An alternative is to minimize the empirical risk Remp(f)  based on the learning data 
samples

    i
1

1
,

n

emp i
i

R f L y f
n 

  x

Empirical risk minimisation

         , , ,i i iR f L Y f L y f y d dy


     i i iX x x x 
X Y

  i
1

1
min ,

n

if H
i

L y f
n


 x

2. Supervised learning

Remp(f) R(f) when n∞    with n the number of training data samples

For a fixed n, Remp(f) et R(f) depend on the complexity / capacity of f  and converge to a 
minimun

Risk versus empirical risk minimisation

[Courtesy of  B. Scholkopf, NIPS 2001]

Min(Remp(f)) ≠
Min(R(f))

Complexity

2. Supervised learning

complexity Error

f1 - (3,3)

f2 + (0,0)

Error

(5,6)

(0,0)

Error

(4,4)

(6,4)

 Need to compromise the empirical prediction error and the complexity of the 
decision function

Class -1 

Class 1 

f1

f2

2. Supervised learning

Risk versus empirical risk minimisation

● Minimisation of the empirical risk minimisation under constraint of good 
generalization performance 

    i
1

1
min , x

n

if H
i

L y f f
n






 

Loss function Regularisation function

Structural risk minimisation

2. Supervised learning
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• To solve this minimisation problem under constraints, we make some
hypothesis :

o On the model of the decision function f

• f is assumed to be a linear hyperplane in the feature space

o On the loss function L and the regularisation function Ω

dX =

:
t

i i

f

b



x w x

X




2. Supervised learning

Structural risk minimisation

Some mathematical reminders

Classe 1 

f1

f1(xi) *yi <0

f1(xi) *yi >0

Training database xi ∈ X = ℝd of class yi ∈ {-1,+1} 

For samples xi correctly classified:

2. Supervised learning

For samples xi badly classified:

  tf b x w x

( , )
t b

dist


 
w x

x
w

Exemple cost functions

● Loss 0-1

● Hinge Loss

● Quadratic loss

● Logistic loss

      i i, 1 sgn / 2i iL y f y f x x

0

1

2

3

4

5

6

7

8

9

10

-2 -1 0 1 2

L
(y

,f
(x

))

yf(x)

coût empirique

Coût charnière

Coût quadratique

Coût logistique     i i, max 0,1i iL y f y f x x

     2

i i, max 0,1i iL y f y f x x

      i i, ln 1 expi iL y f y f  x x

2. Supervised learning

When f(x) is a linear decision function of the form

avec w la normale à l’hyperplan séparateur et b un terme de biais

The regularisation function belongs to the familly of  lp norms

For p=1 (norme l1) and  p=2 (norme l2)

f(x) = wtx + b

 
1

1

d pp

p ip
i

w


     
 
w w

2. Supervised learning

Exemple regularisation functions
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• No closed form solution for f in most of the cases
• Quadratic problem that can be solved with a standard optimization algorithm, eg

conjugate gradients

Structural risk minimisation

    

  

 

i
1

i
1

1
min ,

1
min ,

. .

n

if H
i

n

if H
i

L y f f
n

L y f
n

s c f











 






  





x

x

2. Supervised learning

If L(.,.) and Ω(.,.) are 
convex functions

Exemple : Linear SVM

 Find a linear hyperplane

 that maximises the margin m between

the training samples of both classes

 The margin m is the smallest distance

of any training sample to the decision

hyperplane

Class -1

Class 1

x1

x2

v yi = -1
v ⊤ 

xi + a ≤ -m

yi = +1
v⊤ 

xi + a ≥ m

  Tf a i ix v x

H(v, a) ={x ∊ ℝd | vtx + a = 0}

2. Supervised learning

Problem formulation
H(v, a) ={x ∊ ℝd | vtx + a = 0}

x1

x2

𝒘 yi = -1
v⊤ 

xi + a ≤ -m

yi = +1
v ⊤ 

xi + a  ≥ m
i

max

+a
. . > , i=(1,2,..n)

t

m

s c y m


  

 
 

iv x

v

Ill-posed problem: if (v, a) is a solution, then

(k*v, k*a) ), ∀ 0 < k is a solution too

 We define: 

1
soit

m m

a
b

m

 



v
w w

v

v

Class 1

Class -1

2. Supervised learning

Exemple : Linear SVM

H(w, b) ={x ∊ ℝd | wtx + b = 0}

x1

x2

𝒘

yi = +1
w ⊤ 

xi + b  ≥ 1

 

2

i

1
min

2

. . +b >1, i=(1,2,..n)ts c y





 i

w

w x

yi = -1
w⊤ 

xi + b≤ -1

Class -1

Class 1

2. Supervised learning

Canonical problem formulation
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x1

x2

𝒘

ξ୧

ξ୧

ξ୧=0

ξ୧=0

 

2

1

i

1
m in

2

. . + b 1 - ,  i= (1 ,2 ,

0

..n )

n

i
i

i

i

t

C

s c y









 
 










i

w

w x

Errors are modeled as positive slack variables

ξi associated to each sample (xi, yi) and

measuring the distance to the margin

No error:     

Error : 

 Hinge loss   imax 0,1 xi iy f  

   i i+b <1 1 +bt t
iy y  i iw x w x

 i +b 1 0t
iy   iw x

Class 1

Class -1

When the data are almost linearly separable :

2. Supervised learning

Exemple : Linear SVM

[Source :wikistat : Machine à vecteurs supports]

i C 0i 
i C 

 
1

n
t

i i
i

f y b


  ix x x

Equation of the separating hyperplane is as follows :

Where αi are the Lagrange coefficients

2. Supervised learning

Exemple : Linear SVM

Lagrange coefficients, support vectors and cost variable C

Generalisation to nonlinear problem

Find a mapping function F that maps the data form the original representation space

X into a redescription space H of higher dimension where the classification problem

is linear ie the decision function may be written as h(x) = wtφ(x) + b

Φ (.)

2. Supervised learning

   
1 1 1

1

1
max ,

2

0 , 1,

0

n n n

i j i j H
i j i

i

i

i

n

i
i

y y

avec C i n

et y


  








  




 

   

 


 



i jx x



     
1

,
n

i i
i

f y b  


  ix x x
H

Equation of the decision function is a weighted sum of scalar products between pairs of  
vectors of the redescription space

   , ix x
H

This enables to use the kernel trick

2. Supervised learning

Non Linear SVM
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SVM and kernel trick

Instead of defining a non-linear projection Φ , we use a kernel function associated to the 
projection function

:k  X X 

     , ,i j i jk  F Fx x x x

Symetry

Positive definite
   , ,i j j ik kx x x x

 
,

, 0, ,i j i j i i
i j

k       x x x X 

2. Supervised learning

Une kernel function k is a similarity function. It has to satisfy some properties
referred to as the Mercer conditions to guarante the existence of the corresponding
function Φ

Non linear SVM with kernel formulation

The dual problem is reformulated as

 
1 1 1

1

1
max ,

2

0 , 1,

0

i

i

n n n

i j i j
i j i

i

n

i
i

y y k

avec C i n

et y






 


  



  
   

 


 



i jx x



With solution:

   
1

,
n

i i
i

f y k b


  ix x x

2. Supervised learning

Advantages of the kernel function :

• The computation of the the kernel function is performed in the native

representation space X , which is less computationally intensive than performing a

scalar product in a high-dimensional space

• Projection Φ does not need to be explicitely formulated. It is thus possible to

consider complex project in potentially infinite redescription space

• The kernel function is constructed based on the Mercer conditions without

formulating the corresponding projection function Φ

SVM and  kernel trick

2. Supervised learning

Some standard kernels

● Linear kernel : trivial case equivalent to linear classifier.

● Polynomial kernel

● Gaussian kernel

 , t
i j i jk x x x x

   , 1
dt

i j i jk  x x x x

 
2

2
, exp

2
i j

i jk


  
 
 
 

x x
x x

68

2. Supervised learning
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 
2

2
, exp

2
i j

i jk


  
 
 
 

x x
x x

2. Supervised learning

𝜎 = 0.05 𝜎 = 0.25 𝜎 = 1

Exemple Nonlinear discriminant analysis using kernel 
function operator

● Kernel Fisher discriminant analysis
● Kernel logistic regression
● ….

2. Supervised learning

Risk minimisation - Generative models

● Make some hypothesis on the distribution of the conditional probabilities
and priors

● Learn the conditional probabilities on the training database

● Estimate the posterior probabilities based on the Bayes Theorem

(X Y )i k x

     
       

X Y 1 Y 1
Y 1 X

X Y 1 Y 1 X Y 1 Y 1
i

i
i i

  
  

        

x
x

x x

 


   

2. Supervised learning

 Y k

Bayesian classifier

 
 

0,...,L
arg min R , i
k

k x
=

   
1

, , ( )
L

i i
j

R k L k j Y j X


  x x 

( )iY j X  x

 ,L k j The cost of assigning a class j to any sample belonging to class k

The posterior probability of assigning class j to sample xi

2. Supervised learning

The Bayes classifier minimizes the risk of classifying sample xi in class k as
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Le classifieur bayesien

     1, 1,1 ( 1 ) 1, 1 ( 1 )i i iR L Y X L Y X       x x x  

     1, 1,1 ( 1 ) 1, 1 ( 1 )i i iR L Y X L Y X          x x x  

L’étiquette de xi sera yi=1 ssi
soit

   1, 1,i iR R x x 

         1,1 1,1 ( 1 ) 1, 1 1, 1 ( 1 )i iL L Y X L L Y X           x x 

En supposant que                                                   on obtient    1,1 1,1 0L L  

   
   

( 1 ) 1, 1 1, 1

( 1 ) 1,1 1,1
i

i

Y X L L

Y X L L

     


    
x

x




Dans le cas d’un problème de classification binaire,                         , 
l’expression du risque pour chaque classe est 

Rapport des 
probabilités 
postérieures

constante

 1,1iy   

Le classifieur bayesien

     
       

X Y 1 Y 1
Y 1 X

X Y 1 Y 1 X Y 1 Y 1
i

i
i i

  
  

        

x
x

x x

 


   

L’étiquette de xi sera donc l1 ssi

     
     

       
       

 
 

   
   

 
 

1, 1 1, 1
Y 1 X Y 1 X

1,1 1,1

1, 1 1, 1
X Y 1 Y 1 X Y 1 Y 1

1,1 1,1

X Y 1 1, 1 1, 1 Y 1

X Y 1 1,1 1,1 Y 1

i i

i i

i

i

L L

L L

L L

L L

L L

L L

   
     

 

   
         

 

       
 

     

x x

x x

x

x

 

   

 
 

On pose 

   
 

X Y 1
ln

X Y 1
i

i
i

f
  

      

x
x

x




D’après le théorème de Bayes

Rapport de 
vraisemblance
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   1

1 sinon
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x

The corresponding decision rule is

   
 

X Y 1
ln

X Y 1
i

i
i

f
  

      

x
x

x




For a binary classification problem, the decision function is

Likelihood ratio

2. Supervised learning

Bayesian classifier

     

   
1

X Y Y
Y X

X Y Y

i
i K

i
j

k k
k

j j


  
  

  

x
x

x

 


 

i
dx X =     , , 1, , , 1, ,j k

i i j k d i n    x x  

The Bayes theorem gives
 1 2x ,x ,…x

i i i

d
ix =

2. Supervised learning

Naive Bayes classifier

Hypothesis of  conditional independence between every pair of features given the value of 
the class variable. 

Using the naive conditional independence assumption

 
   

   
1

1

Y X Y
Y X

X Y Y

i

p
k k

k
i K

i
j

k l
k

j j





  
  

  





x
x

x

 


 

The denominator is constant given the input 

     
1

Y X Y X Y
i

p
k k

i
k

k k l


     x x  
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 1 2x ,x ,…x
i i i

d
ix =

   
1

arg max Y X x Y
i

d
k k

i
l k

y l l


    

2. Supervised learning

Naive Bayes classifier

we can use the following classification rule:

• The independent conditional probabilities are estimated separately for each 

feature

• The different naive Bayes classifiers differ mainly by the assumptions they make 

regarding the distribution of the conditional probabilities

Models based on risk minimisation: Advantages and 
Limitations

➔ Advantages

◆ Quiet flexible inputs: based on kernel computation 

◆ Interpretable (somewhat): people are able to understand decision tree models

◆ Produce an exact solution

◆ Kernel trick to efficiently compute non-linear models

◆ Quite robust to small size and unbalanced training datasets

➔ Limitations

◆ Low interpretability : difficult to extract the most discriminant features

◆ Problem with large scaled datasets

2. Supervised learning

i. Use case

ii. Standard pipeline

iii. Learning a decision function

iv. Decision model based on the minimization of the 
misclassification error

v. Decision trees

vi. Neural networks

2. Supervised learning

2. Supervised learning

Decision Trees
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2. Supervised learning

Decision Trees: Motivation
Existing decision trees based on clinical evidence and expertise,
use elementary features and manual thresholds.

2. Supervised learning

What is a Decision Tree (DT)?
➔ Big idea of DT

◆ Use very elementary decision rules
◆ Combine them into a tree

➔ Example: binary DT for sport practice

if age<18:
   return "OK"
else:
   if sport_type == contact:
   |  return "Additional Test (ophthalmic exam)"
   else:
   |  if electrocardiogram == normal:
   |  |  if family_history_of_CVD:
   |  |  |  return "Additional Test (cardiac stress test)"
   |  |  else:
   |  |  |  return "OK"
   |  else:
   |  |  return "Additional Test (cardiac stress test)"

2. Supervised learning

Decision Tree in Computer Science
➔ A model describing a function                        that

◆ to any input value/point
◆ associates

➔ A Tree-shaped representation
◆ a root node, other split nodes, and leaves
◆ each split n has a test function that gives a child index

usually using a single coordinate (e.g.,                    ) 
◆ each leaf has a prediction model

usually very simple (e.g. constant value)

➔ A simple way of computing the output (for a point     )
◆ start at the root
◆ if in a split node n, move to child 
◆ if in a leaf node   , return

2. Supervised learning

Decision Tree in Computer Science
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2. Supervised learning

Decision Tree in Computer Science

2. Supervised learning

Learning Optimal Decision Trees
➔ Very complex (NP-complete), even for simple definitions of “optimal”
➔ Use of heuristics and of a greedy Top-Down approach

➔ Principle of TDIDT (Top-Down Induction/learning of DT)
◆ Start with an empty tree and all examples (dataset)
◆ Find a good test

● good test?
● examples with same class fall on the same side
● or, similar examples fall on the same side
● for each possible test outcome, create child node

◆ Move each example to a child, according to the test outcome
◆ Repeat for each child that is not “pure”

➔ Main question
◆ how to decide which test/split is “best”

2. Supervised learning

Good versus Bad Splits for Decision Trees?
which is a better split?

A                                   B                                  C

2. Supervised learning

Toward finding the best test/split (for building classification trees)
➔ Find test for which children are as “pure” as possible

➔ Entropy as purity (borrowed from the information theory)
◆ Entropy is a measure of “missing information”
◆ More precisely, the number of bits

needed to represent the missing information,
◆ … on average, using the optimal encoding

➔ Entropy definition
◆ given a set S
◆ with instances belonging to class C with prob
◆ we have:
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2. Supervised learning

Entropy
➔ Considering a node n, with a part of the dataset
➔ Denoting p = proportion of instances of class +1 in set n
➔ Note that if p=0, p×log2(p) is undefined but tend to 0
➔ The maximum entropy of 1

is reached when the 2 classes are perfectly mixed

2. Supervised learning

Good versus Bad Splits for Decision Trees?

2. Supervised learning

Information gain

➔ Heuristic for choosing a test in a node
◆ (on average over the children)
◆ on average, provides most information about the class
◆ on average, reduces the class entropy the most
◆ expected reduction of entropy = information gain

➔ Information gain

◆ S = set of instances in a given node n
◆ Sv = set of instances of S that go in child v of n
◆ |Sv| / |S| = proportion of instances in Sv

2. Supervised learning

Other purity measure/gain (alternative to entropy)

➔ Gini impurity index
◆ (not to be confused with gini coefficient)
◆ “measure of how often a randomly chosen element from the set would be 

incorrectly labeled if it was randomly labeled according to the distribution 
of labels in the subset” (lower is better).

➔ (for binary classification)
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2. Supervised learning

Nature of Decision Tree Inputs
➔ can have any number of coordinates with arbitrary types
➔ numbers, e.g.,                     or
➔ categorical variable, e.g.,

and others (templates, binary image patches, …)

➔ Test functions               can take various forms
◆ two children: equal or not?
◆ two children: greater than?

◆ one child per possible outcome:
e.g., 3 children with indices

2. Supervised learning

Nature of Decision Tree Outputs
➔ Categorical output, e.g.,

◆ Binary classification,
◆ Multiclass classification,
◆ Rating: 1 to 5 stars

⟹ Leaf                             (one of the outcomes)

➔ Numerical output, e.g.,
◆ Regression,
◆ Multi-dimensional regression, e.g.
◆ Count-regression

⟹ Leaf                             or                                     (affine, …)

➔ Classification and regression trees, but also clustering trees…
➔ NB: we focused on classification trees

2. Supervised learning

DT: Advantages and Limitations
➔ Advantages

◆ Flexible input: numerical and categorical data, no need for 
normalization, no assumptions, etc

◆ Interpretable (somewhat): people are able to understand decision tree 
models

◆ White-box: easy to know why a decision is taken
◆ Performs well on large datasets
◆ Universal approximator
◆ Automatic feature selection

➔ Limitations
◆ Lack of robustness: small change in the training data ⇒ possible large 

change in the tree
◆ NP-complete problem requires heuristics and greedy algorithms
◆ Need to take care of “imbalanced” categorical features
◆ Need to take care of the overfitting

2. Supervised learning

Avoiding overfitting with DT
➔ Option 1

◆ stop adding nodes when overfitting starts occurring
◆ needs a stopping criterion:
◆ predefined (max-depth, min-leaf-size)
◆ using a validation set
◆ using statistical tests or MDL (minimum description length)

➔ Option 2
◆ don’t bother about overfitting when growing the tree
◆ after the tree has been built, start pruning it
◆ prune to get better trees (validation)
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2. Supervised learning

Random Forests (RF), in a few words
➔ Ensemble learning, bagging: multiple trees (M trees)

◆ Random dataset (bootstrap: same size, drawn with replacement)
◆ Random features (m features) at each split
◆ Fully grown trees (no pruning)

➔ Prediction using a majority vote, or average
➔ NB: bagging allow to estimate the error of each tree

➔ Fast and robust to overfitting
➔ But, non-interpretable

may still overfit in case of noise

2. Supervised learning

Example of Decision Forests

i. Use case

ii. Standard pipeline

iii. Learning a decision function

iv. Decision model based on the minimization of the 
misclassification error

v. Decision trees

vi. Neural networks

2. Supervised learning

2. Supervised learning

Neural Networks
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2. Supervised learning

Ra
➔ En

https://commons.wikimedia.org/w/index.php?curid=22012513

2. Supervised learning

Biological Neurons (40s)

➔ A single neuron
◆ Threshold on

a sum of inputs

➔ Complex organisation
◆ Thousands of inputs
◆ Billions of connections
◆ 3D layout

➔ Of much interest
◆ Biology
◆ Neuroscience
◆ Neuropsychology
◆ Artificial intelligence
◆ ...

2. Supervised learning

Artificial Neural Networks: some history

➔ Started in the 50s

➔ Became more popular in the 80s
(“backpropagation” in 1975)

Rumelhart, Hinton, and McClelland (1986)
A General Framework for Parallel Distributed Processing:
explorations in the microstructure of cognition

➔ Big slow down in the 90s

➔ 2010s
◆ More data, more processing power (GPU)
◆ Advances in optimization, architecture (convolution, ReLU, skip conn.)
◆ “Deep Neural Networks”
◆ State of the art performance in image, video, audio, … processing

2. Supervised learning

Single Neuron, The Perceptron

Step function
Sigmoid
Tanh
Rectified Linear Unit



4/15/2019

27

2. Supervised learning

Multiple Outputs: Fully Connected Layer

➔ One “perceptron” per output

➔ Different weights for each output

1

11

2

2 2

2. Supervised learning

Two-layer Perceptron

➔

https://twitwi.github.io/teaching-weblets/nn-3d-steps/nn-3d-one-step.html

2. Supervised learning

Multilayer Perceptron (MLP)

2. Supervised learning

Expressive Power of Multilayer Perceptrons
(universal approximation theorem)

We can approximate any continuous function
with a multilayer perceptron that has a single hidden layer (not “deep”)
but that is sufficiently wide (a lot of neurons on the hidden layer)

➔ Question: should we prefer adding
◆ more layers (deeper)?
◆ more neurons in a single hidden layer (wider)?

⇒ Deeper networks generalize better

➔ Most probably because they create successive abstractions
(observed empirically, on many real problems)
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2. Supervised learning

Training Neural Networks (finding θ, a good set of weights)

➔ Originally, the perceptron algorithm

➔ Today, mainly, gradient descent (and variants)

◆ We want to optimize

◆ Start with random weights θ ⁰

2. Supervised learning

Training Neural Networks (finding θ, a good set of weights)

➔ Today, mainly, gradient descent (and variants)

◆ We want to optimize
(sum over the training set)

◆ Start with random weights θ ⁰

◆ “Vanilla” batch Gradient Descent

◆ Mini-batch Gradient Descent iterates over

Each iteration considers a random minibatch of points
- we have to choose a minibatch size, e.g. 
- Stochastic gradient descent SGD: single sample batch 

2. Supervised learning

More About Deep Neural Networks

……… during the whole week


