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Machine Learning in Medical Image Analysis
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Machine Learning and AI: Are they the same?
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1. What is the difference between AI and Machine 
Learning?

2. Do neural networks generalise well to unseen 
data points (e.g. scanner types)? What do these 
models actually learn?

3. Why do neural networks require large amount 
of data?

4. Can we fully rely on these algorithms in clinical 
practice? 



Where do we stand?
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Machine Learning (ML) models are good at:

- Automating well-defined and constrained (low variation) tasks. 

- Reproducible results and fast predictions -> Scale up to thousands of images 

- Can display performance close to the average annotator for some tasks -> Label quality 

They are a good candidate for assistive clinical workflows as long as they are monitored. 



Segmentation of Cardiac Images

7

Challenges

- Manual delineation of large number of 
images can be time-consuming.

- Reproducibility and large inter-observer 
variability are common issues.

Objectives

- Machine learning algorithm can automate 
and produce average annotator 
performance on some tasks.

- It can scale up to thousands of images and 
assist clinical workflow. 



CNN Segmentation Model
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[W. Bai et al. JCMR 

2018]

Training dataset: 5000 Cases from the UKBB Dataset. 

8 different annotators extracted manual segmentations 
for these images



Auto-Generated Image Segmentations
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Variability Between the Annotators 
and Neural Network Model
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Multi-Input Cardiac Image Super-Resolution 
using Convolutional Neural Networks

Ozan Oktay, Wenjia Bai, Matthew Lee, Ricardo Guerrero, Konstantinos 
Kamnitsas, Jose Caballero, Antonio de Marvao, Stuart Cook, Declan O’Regan, 

and Daniel Rueckert

MICCAI’16 Conference, October 2016, Athens



SAX Cardiac MR Image Acquisition

• Large slice thickness (8-10 mm)

• Due to constrains on SNR, 
acquisition and breath-hold time

• It hampers subsequent image 
analysis and quantitative 
measurements.

Clinical Motivation 
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Slice I

Slice III

Slice II

Slice IV
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Low and High Resolution Images

PSF kernel and 
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Proposed 3D-SR Model (Single-Image)
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Components of the model

- 3D Convolution and Deconvolution (inverse convolution) Kernels

- Rectified Linear Units (ReLUs)

- Regression Based Cost Function (Smooth L1-Norm)

- Input (2D Stack-LR) and Output (3D-HR) Images



15

Image Quality Assessment  

Upsampling x5 

Inference Time: 6-8 Seconds for image size (140x140x10)

Low Resolution
Input Image

Linear 
Interpolation

The Proposed
Method

High Resolution
Ground-truth
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Motion Tracking Experiments 
(SR is used as a preprocessing method)

Surface to Surface Distance
(Proposed vs HR) 4.73 mm 

Surface to Surface Distance
(Linear vs HR) 5.50 mm 
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Motion Tracking Experiments 
(SR is used as a preprocessing method)



Anatomically Constrained Convolutional Neural 
Networks (ACNN): Application to Image 

Enhancement and Segmentation

Ozan Oktay, Enzo Ferrante, Konstantinos Kamnitsas, Wenjia Bai, Jose 
Caballero, Mattias Heinrich, Stuart Cook, Antonio de Marvao, Declan O'Regan, 

Bernhard Kainz, Ben Glocker, and Daniel Rueckert

IEEE TMI, August 2017



Research Motivation
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Analysis of Neural Networks 

I. Model parameterization 

II. Model capacity / receptive field

III. Loss function / objective

Standard Loss Functions

I. X-Entropy loss function 

II. L2 or Smooth L1 loss function

Input Image Output Image



Research Objective
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(a) (b) (d)(c)

(e) (f) (h)(g)

(i) (j) (l)(k)

Input Image Baseline
Approaches

Proposed
ACNN

Ground-
truth

1. Can we teach our models the underlying anatomical priors (eg shape) ?

2. A new global training objective to teach CNN models 



Standard Auto-Encoder Model
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The proposed T-L Network
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Proposed ACNN - Segmentation Model
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Proposed ACNN – Super Res Model
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Cardiac MR Super-Resolution 
Experiments

Input Low Resolution Image
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Cardiac MR Super-Resolution 
Experiments

CNN Super-Resolution
Trained with Motion-

Augmentation
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Cardiac MR Super-Resolution 
Experiments

ACNN-SR
(w shape model)
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3D-US Segmentations Results
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3D-US Segmentations Results



Learned Hidden Representations
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Histogram of the Learned Codes
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Learned Hidden Representations
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Mean±2Std 
(Code #1)

Mean±2Std 
(Code #2)

Learned representations can be used to: 

I. Predict Clinical Indices (Age, Blood Pressure, Myocardial Mass, etc ..)

II. Genetic Studies / Understanding the cardiac related pathologies 

PCA Codes vs T-L Codes

I. Pathology classification

» Healthy Subjects

» Dilated Cardiomyopathy

» Hypertrophic 
Cardiomyopathy

II. Classification accuracy

» PCA: 83.3%

» T-L: 91.6%

» 60 CMR Sequences



Learning Based Quality Control for 
Cardiac MR Images

Giacomo Tarroni, Ozan Oktay, Wenjia Bai, Andreas Schuh, Hideaki Suzuki, 
Jonathan Passerat-Palmbach, Antonio de Marvao, Declan P. O’Regan, Stuart 

Cook, Ben Glocker, Paul M. Matthews, Daniel Rueckert

IEEE TMI, November 2018



Automated MR Image Quality Assessment 
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Image Quality Issues

- Affecting short-axis cardiac 
MR image acquisition.

- Fully-automated quality 
control pipeline for cardiac 
MRI, tested on 3000 cases 
from the UK Biobank study.
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Automated MR Image Quality Assessment 

Decision tree model 
automatically quantifies:

- Inter-slice misalignment.

- Heart-coverage rate. 

- Image contrast.

[G. Tarroni, O. Oktay et al.  IEEE TMI 2018]



Structured Decision Forests For Multi-modal 
Ultrasound Image Registration 

Ozan Oktay, Andreas Schuh, Martin Rajchl, Kevin Keraudren, Alberto Gomez, 
Mattias Heinrich, Graeme Penney, and Daniel Rueckert 

MICCAI’15 Conference, October 2015, Munich



Image Guided Cardiac Interventions
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Pre-Operative Stage CT and 
MR Image Acquisitions

Intra-Operative Image Guidance 
with TOE Ultrasound ImagesSpatially Aligned Pre and 

Intra Operative Images



Advantages of Probabilistic Edge Maps
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I. Modality independent (e.g. CT, MRI, US)

II. Computationally efficient ( 20s per image )

III. Target organ specific image registration

IV. Accurate and smooth anatomical 

representation

V. Same training and testing configuration is 

applied to all three modalities.



Structured Decision Forest

Input Image

Image features

Structured Decision Tree

Output edge patch labels

• Each voxel is voted for Nt x (Me)3

• Nt is the number of trees.

• All the votes are aggregated by averaging. 
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PEM Representation

Dollar et al.: “Structured forests for fast edge detection.” ICCV 2013



Proposed Multi-Modal Registration Framework 
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PEM-CT

PEM-US

Input cardiac 

images
PEM 

representation

Initial Alignment

of the images

Global alignment 

with robust block 

matching [2]

B-spline FFD 

based non-rigid 

registration [1]

Computation Time
(Quad-core 3.0GHz)

~20s per image ~21s per image ~73s per image

Rueckert et al.: “Non-rigid registration using free-form deformations: Application to breast MR images.” TMI’99
Ourselin et al.: “Reconstructing a 3D structure from serial histological sections.” Image and Vision Computing ’01 



US/CT & US/MR Image Alignment
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Subject 1 Subject 1

Subject 2 Subject 2

Subject 3

Subject 3

Subject 4

Subject 4



3DUS Image Registration with PEMs
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Initial alignment 

atlas image

(in green)

# Atlases = M1

Affine Registration 

with Block Matching 

# Atlases = M2 < M1

Deformable 

registration 

and globally 

weighted label 

fusion

Target Image

Atlas Images PEMs

PEM



Endocardial Surface Distance Errors
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Stratified Decision Forests for Accurate 
Anatomical Landmark Localization

Ozan Oktay, Wenjia Bai, Ricardo Guerrero, Martin Rajchl, Antonio de Marvao, 
Declan Regan, Stuart Cook, Mattias Heinrich, Ben Glocker, and Daniel Rueckert

IEEE TMI, September 2016



Structured Regression Forest
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I. Anatomical landmark 
localization

II. Extracted boundaries 
regress the location of 
each landmark point

III. Similar approaches can be 
easily formulated with 
CNN models (e.g. YOLO v2) 
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Structured Regression Forest

Gall J., et al. ”Class-Specific Hough Forests for Object Detection.” CVPR 2009.
Criminisi A., et al. “Regression Forests for Efficient Anatomy Detection and Localization in CT Studies.” MCV 2010.



Attention Gated Networks: Learning to Leverage 
Salient Regions in Medical Images

Ozan Oktay, Jo Schlemper, Michiel Schaap, Mattias Heinrich, Bernhard Kainz, 
Ben Glocker, Daniel Rueckert

Medical Image Analysis Journal, Jan 2019



Cascaded Models in Image Analysis

47

Cascaded models:

- Strategy: First localise then classify.

- GPU memory constraints.

- Solving simpler problems.

- Additional context information from 
preceding models.  

Potential Drawbacks:

- Parameter & computation    
redundancy 

- Multiple training schemes                
might be required

Class Activation Map

ROI Pooling

FCs

FCs

FCs

…
MIL 

Loss

Weakly supervised 

segmentation

Segmentation Loss

Stage 2

Stage 3

Shared Convs
Image

LocNet

SegNet

MilNet

Loss1

Loss2

Loss3

Conv5

Global 

Pooling

Multi
Class

Loss

Convs

Stage 1

C

O

N

V
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O

N

V

5

Conv5

Figure 3. WCCN (3stage): The pipeline of end-to-end 3-stage cascaded CNN for weakly supervised object detection. For this cascaded

network, we designed new architecture to have weakly supervised segmentation as second stage, so first and third stages are identical to

the stages of the previous cascade. The new stage will improve the selecting candidate bounding boxes by providing more accurate object

regions.

functions is learned jointly by end-to-end stochastic gradi-

ent descent optimization. The total loss function of the cas-

caded network is:

L T ot al = L GA P (Labels(W ))+

L M I L (Labels(W )|candidateB oxes(W )).
(2)

where W contains all network parameters. We set the hy-

perparameter balancing two loss functions to 1. Wesuspect

cross-validation on this hyperparameter can improvethe re-

sults in the experiments.

3.2. Three-stage Cascade

In thissection, weextend our 2-stage cascaded model by

another stage that addsobject segmentation asanother task.

We believe more information about the objects’ boundary

learned in a segmentation task can lead to acquisition of

a better appearance model and then better object localiza-

tion. For this purpose, our new stage uses another form of

weak supervision to learn a segmentation model, embed-

ded in the cascaded network and trained along with other

stages. This extra stage will help the multi-loss CNN to

have better initial locations for choosing candidate bound-

ing boxes to pass to the next stage. So this new cascade

has threestages: first stage, similar to previouscascade isa

CNN with global pooling layer; second stage, fully convo-

lutional network with segmentation loss; third stage, mul-

tiple instance learning with corresponding loss.

New stage (Segmentation Loss): Inspired by [3, 24],

we propose to use a weakly supervised segmentation net-

work which uses an object point of location and also label

as supervisory signals. Incorporation of initial location of

object from previous stage (location network) in the seg-

mentation stagecan obtain moremeaningful object location

map. Theweak segmentation network usestheresultsof the

first stage as supervision signal (i.e., pseudo ground truth)

and learns jointly with theMIL stage to further improve the

object localization results.

To calculate the loss for this stage, we define si c for the

CNN score for pixel i and class c in image I . Eq.3, shows

the softmax for class c at pixel i .

Si c = exp(si c)/

CX

k= 1

exp(si k ) (3)

Considering y as the label set for image I , the loss

function for the weakly supervised segmentation network

is given by:

L Seg(S, G, y) = −

CX

i = 1

yi log(St c c) −
X

i 2 I s

↵ i log(St c G i
)

By tc = argmax
i 2 I

Si c

(4)

wherethefirst term isused for image-level label supervision

and second term is for the set of labeled pixels in Is . Gi is

4



Attention Gates in CNN Models
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Proposed Soft-Attention Gates
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Attention Coefficients 
Across Different Training Epochs
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Epoch-3 Epoch-6 Epoch-10

Attention coefficients across different training epochs
(kidneys, spleen, pancreas)

Epoch-60 Epoch-150Input Image



Attention Gates in Image Classification

51

A

16
8

32
64

64

1

A

A
gg

re
ga

ti
o

n

p
re

d
ic

ti
o

nIn
p

u
t

Conv3x3 + ReLU
A

Max-Pool /2

Attention Unit Global Avg. Pooling

64

32

64



Attention Maps at Different Scales
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Adaptive pooling of feature maps with attention gates instead of using 
global aggregation
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