

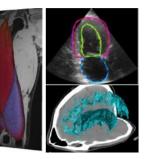
Generative Adversarial Networks (GANs)

Anirban Mukhopadhyay TU Darmstadt, Germany



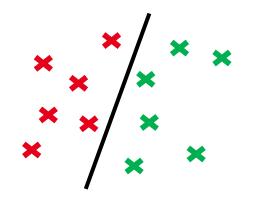
Deep learning for medical imaging school

April 15—19 2019, Campus de la Doua, Lyon



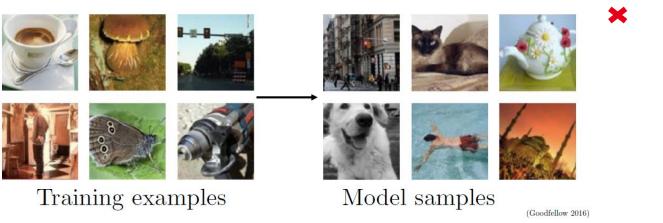
Introduction

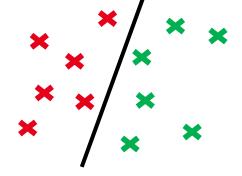
Generative vs. Discriminative



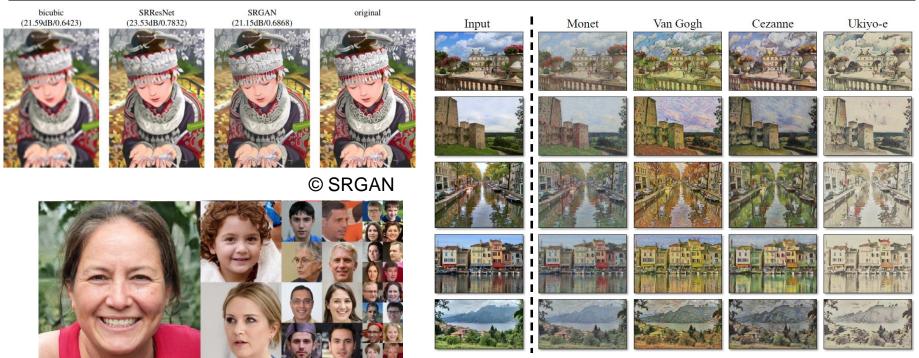
Introduction

- Generative vs. Discriminative
 - Generating "realistic-looking" images one step closer to understanding it





GAN Results

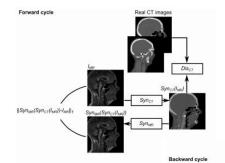


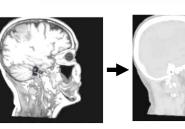
© CycleGAN

© Karras2018

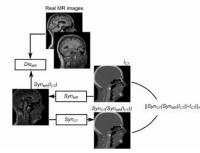
What is in it for me?

MR to CT Reconstruction

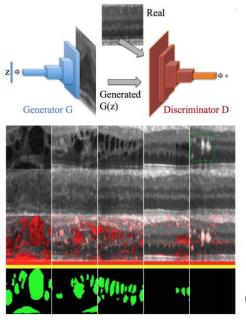




©Wolterink 2017

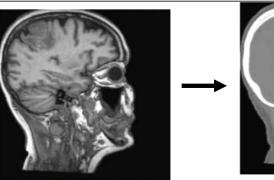


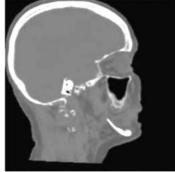
Anomaly Detection

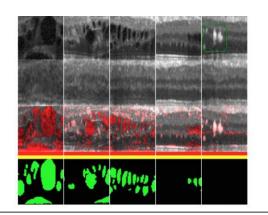


What is in it for me?

- Proxy for training data
 - Costly annotation
 - Imbalance





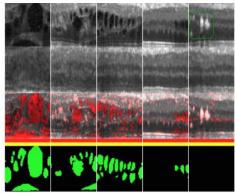


©Wolterink 2017

7

What is in it for me?

- Proxy for training data
 - Costly annotation
 - Imbalance
- Similarity metric
 - Discriminator

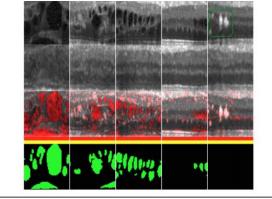


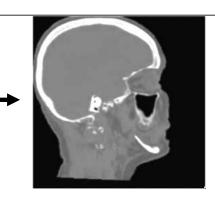
©Wolterink 2017

What is in it for me?

- Proxy for training data
 - Costly annotation
 - Imbalance
- Similarity metric
 - Discriminator
- Domain Shift
 - Adversarial training

©Schlegl 2017





Outline

- Theory
- Key GANs

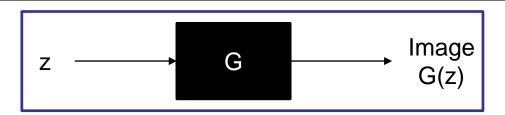
- Medical Applications
- Adversarial Learning

- Limitations of GAN
- Summary

Tidying Up GAN – the Marie Kondo way

UNSUPERVISED Learning

- UNSUPERVISED Learning
- Perplexity
 - pdf for the generated distribution

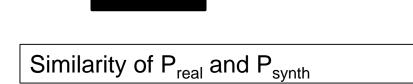


- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets
- Idea 2: Gradient feedback from discriminator
- Idea 3: Game of many moves

- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity

15

• Idea 1: Sidestep perplexity with deep nets



G

7

Image

G(z)

7

Theory

- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity

16

Idea 1: Sidestep perplexity with deep nets

Similarity of P_{real} and P_{synth} Deep Net D – maps images to [0,1]

📿 \ тн

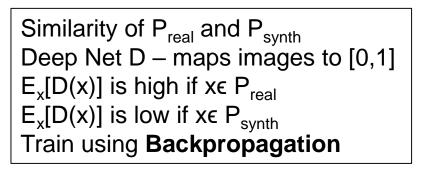
17

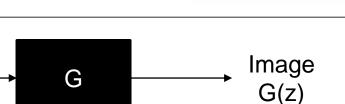
Theory

- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets

Similarity of P_{real} and P_{synth} Deep Net D – maps images to [0,1] $E_x[D(x)]$ is high if $x \in P_{real}$ $E_x[D(x)]$ is low if $x \in P_{synth}$

- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets





- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets
- Idea 2: Gradient feedback from discriminator

Goal of generator G: $E_{z}[D(G(z))]$ is as high as possible

- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets
- Idea 2: Gradient feedback from discriminator

7

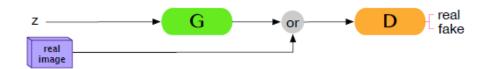
Goal of generator G: $E_z[D(G(z))]$ is as high as possible **Fooling** Discriminator

- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets
- Idea 2: Gradient feedback from discriminator

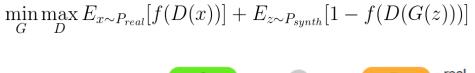
7

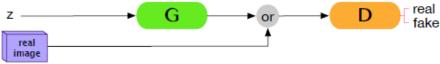
Goal of generator G: $E_z[D(G(z))]$ is as high as possible **Fooling** Discriminator Backpropagation through D(G(.))

- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets
- Idea 2: Gradient feedback from discriminator
- Idea 3: Game of many moves



- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets
- Idea 2: Gradient feedback from discriminator
- Idea 3: Game of many moves

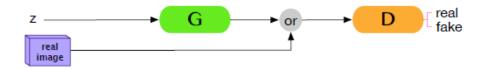




- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets
- Idea 2: Gradient feedback from discriminator
- Idea 3: Game of many moves

 $\min_{G} \max_{D} E_{x \sim P_{real}}[f(D(x))] + E_{z \sim P_{synth}}[1 - f(D(G(z)))]$

For Goodfellow 2014 f(x) = log(x)



- Generative vs. Discriminative
- UNSUPERVISED Learning
- Perplexity
- Idea 1: Sidestep perplexity with deep nets
- Idea 2: Gradient feedback from discriminator
- Idea 3: Game of many moves

For Goodfellow 2014 f(x) = log(x)Derivative of log(x) = 1/xTraining **sensitive** to instances that D finds **awful**

$$\min_{G} \max_{D} E_{x \sim P_{real}}[f(D(x))] + E_{z \sim P_{synth}}[1 - f(D(G(z)))]$$



Understanding Key GANs

Theory Engineering Recipe Tidy GANs

© giphy.com

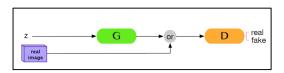
Understanding Key GANs

- Engineering Recipe
 - ■I/P, O/P
 - Architecture

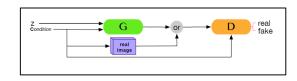
Loss Function

Understanding Key GANs

Engineering Recipe

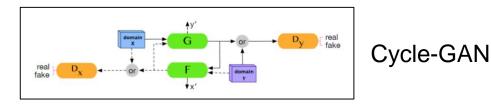


■I/P, O/P



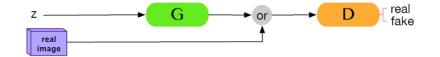
Architecture

Loss Function



Deep Convolutional GAN (DC-GAN)

- Unsupervised
- Representation Learning



Deep Convolutional GAN (DC-GAN)

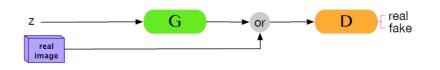
- Unsupervised
- Representation Learning
- Latent space Interpolation

Deep Convolutional GAN

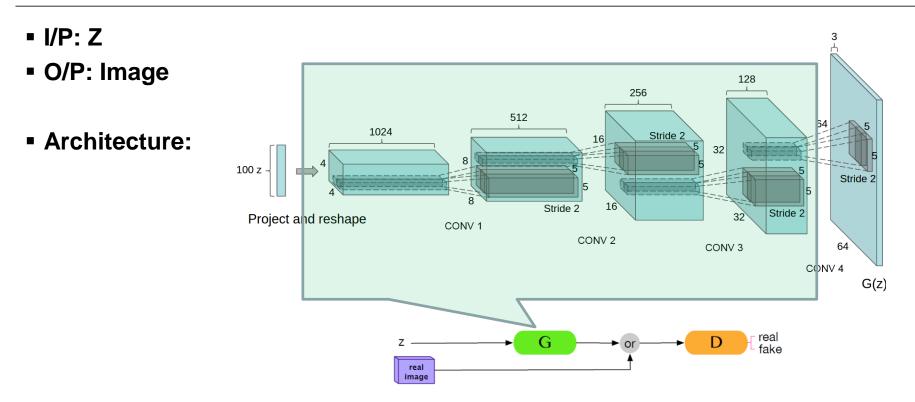
- I/P: Z (100-D multivariate Gaussian)
- O/P: Image

DC-GAN

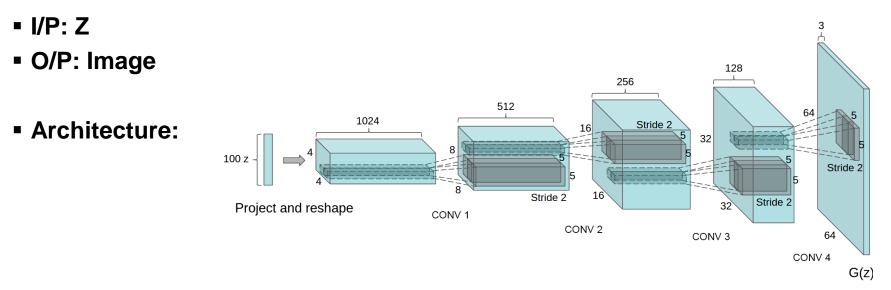
- I/P: Z (100-D multivariate Gaussian)
- O/P: Image
- Architecture:



DC-GAN



DC-GAN



Loss Function: Same as Goodfellow 2014

Conditional GAN (C-GAN)

How to bring in some supervision?

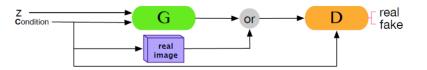
0	0	Q	0	Ø	Ô	0	C,	0	Ô	Q	0	۵	0		Ò	Ø	5	Ş	Ò	0
1	Ì.	ł	J.	1		and a	1		ŀ	7	ļ	1	ł	1	t	ţ	l	1	1	ļ
2	3	2	2	3.	2	2		24	Ċ	2	2	÷.		2	Ĵ,	2		3	ð	Ï
3	1	1	ţ, J	З	ŝ	3	3.	3		t, i	3	3	ž	3	ŝ	ġ	4	3	3	3
4	¥	5	ş	4	×	Ŷ	4	4	4	\hat{Q}_{j}	Ŷ	4	4	¥	4	4	4	4	4	4
5	\$	5	5	Ş	5		5	5	\$	127	5	5	Ĕ,	ų,	5	5	5		4	5
6	b	6	Ę,	4	Ü	12	3	á	6	с,	6	6	6	1	6	ø	b	10	\$	6
7	7	7	7	7	2	<u>ر</u>	1	3	7	7	7	7	7	C.	7	7	7	1	7	
8	8	E	2	\$	2	2	1	ŧ	8	ł	E	8	8	8	8	3	E	8	E	2
9	9	¥.	đ.	9	ÿ	9	4	2	9	4	9	9	9	9	9	9	9-	ą	9	5

Conditional GAN (C-GAN)

- **I/P: Z, Condition** 0,1,2,...
- O/P: Image

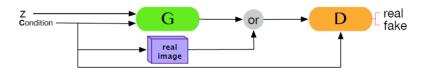
C-GAN

- I/P: Z, Condition
- O/P: Image
- Architecture:



C-GAN

- I/P: Z, Condition(c)
- O/P: Image
- Architecture:



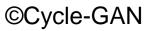
Loss Function:

$$\min_{G} \max_{D} E_{x \sim P_{real}}[f(D(x|c))] + E_{z \sim P_{synth}}[1 - f(D(G(z|c)))]$$

How to incorporate unpaired images for style/ domain transfer?

horse \rightarrow zebra

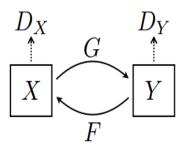
 $zebra \rightarrow horse$



- I/P: Image (Domain X)
- O/P: Image (Domain Y)

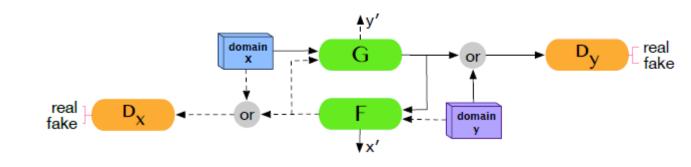
- I/P: Image (Domain X)
- O/P: Image (Domain Y)

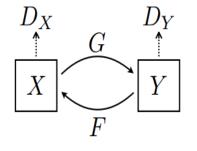
Architecture:



- I/P: Image (Domain X)
- O/P: Image (Domain Y)

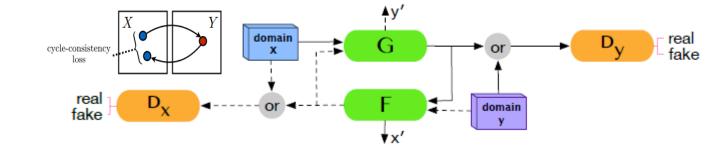
Architecture:

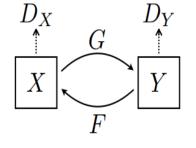




- I/P: Image (Domain X)
- O/P: Image (Domain Y)

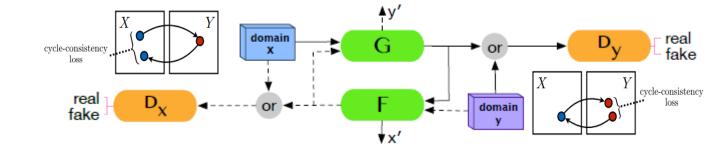
Architecture:

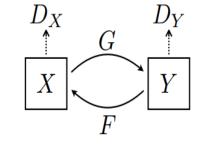




- I/P: Image (Domain X)
- O/P: Image (Domain Y)

Architecture:





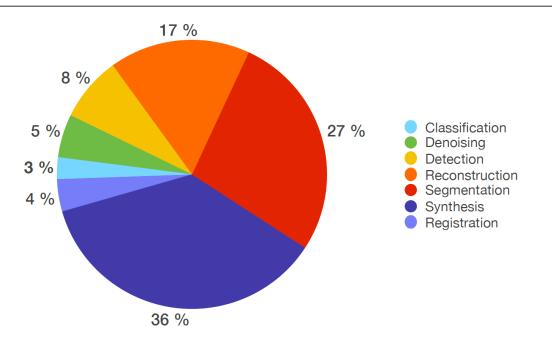
Engineering Recipe Summary

GANs	I/P	O/P	Architect.	Loss	Note
DC-GAN	Z	Img	z G D real real mage	GAN	Unsup.
C-GAN	Z,C	Img	Zondition G or D fake	Modif. GAN	Cond. Supervis.
Cycle-GAN	lmg (X)	lmg (Y)	real D_X $real fake$	Cycle Loss	Style Transfer

© popsugar

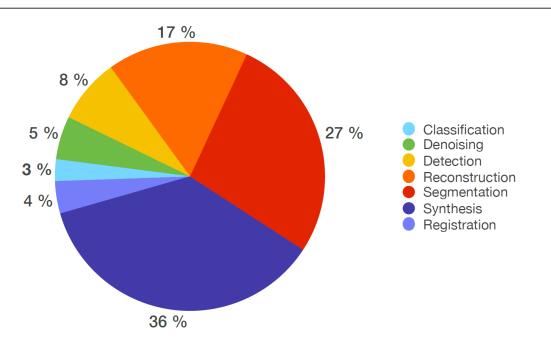
- Review article
 - 77 papers are reviewed
 - Till end of 2018
 - Incl. MICCAI, MiDL, ISBI, TMI, MedIA etc.

- Review article
 - 77 papers are reviewed
 - Till end of 2018
 - Incl. MICCAI, MiDL, ISBI, TMI, MedIA etc.
- Mostly applied in
 - Synthesis
 - Segmentation



https://arxiv.org/abs/1809.06222

- Review article
 - 77 papers are reviewed
 - Till end of 2018
 - Incl. MICCAI, MiDL, ISBI, TMI, MedIA etc.
- Mostly applied in
 - Synthesis
 - Segmentation
- Pattern
 - Modify Architecture
 - Modify Loss



https://arxiv.org/abs/1809.06222

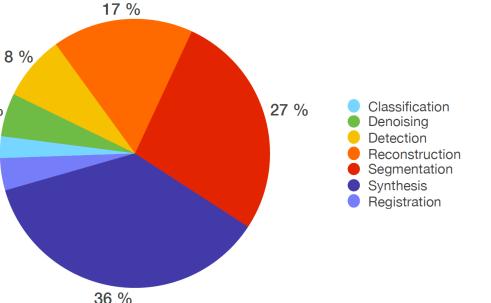
- Review article
 - 77 papers are reviewed
 - Till end of 2018
 - Incl. MICCAI, MiDL, ISBI, TMI, MedIA etc.

5 %

3 %

4 %

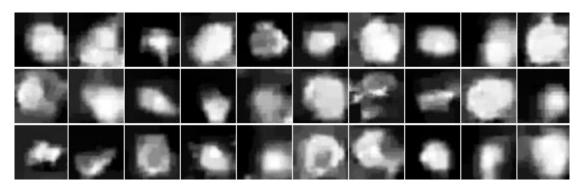
- Mostly applied in
 - Synthesis
 - Segmentation
- Pattern
 - Modify Architecture
 - Modify Loss
- Re-apply the recipe



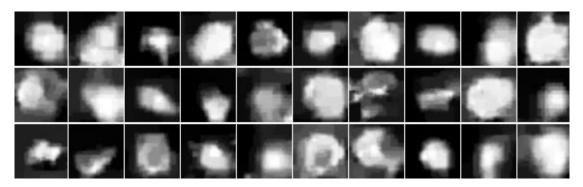
- Discriminating Lung Nodules
 - Benign
 - Malign



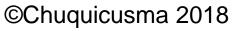
- Discriminating Lung Nodules
 - Benign
 - Malign
- Unsupervised synthesis
 - Modify DC-GAN



- Discriminating Lung Nodules
 - Benign
 - Malign
- Unsupervised synthesis
 - Modify DC-GAN

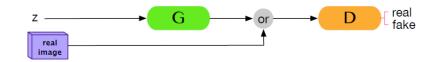


- Visual Turing Test
 - 2 radiologists



- I/P: Z
- O/P: Image (64X64X3)

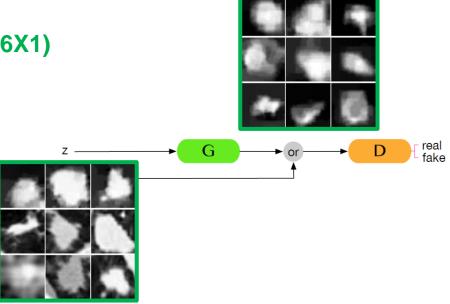
Architecture:



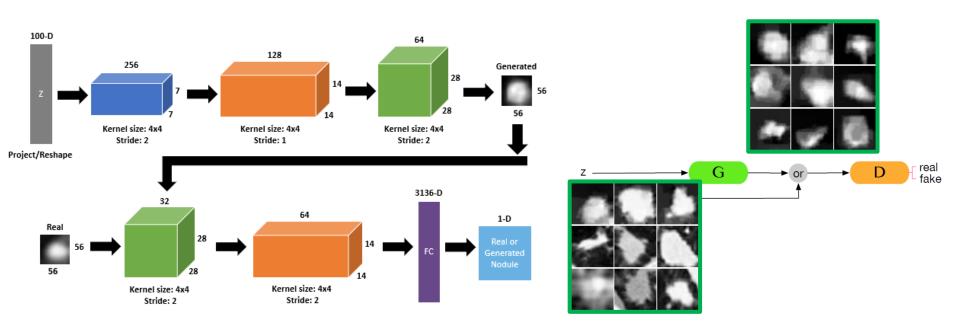
Loss Function: Same as Goodfellow 2014

- I/P: Z
- O/P: Lung Nodule image (56X56X1)

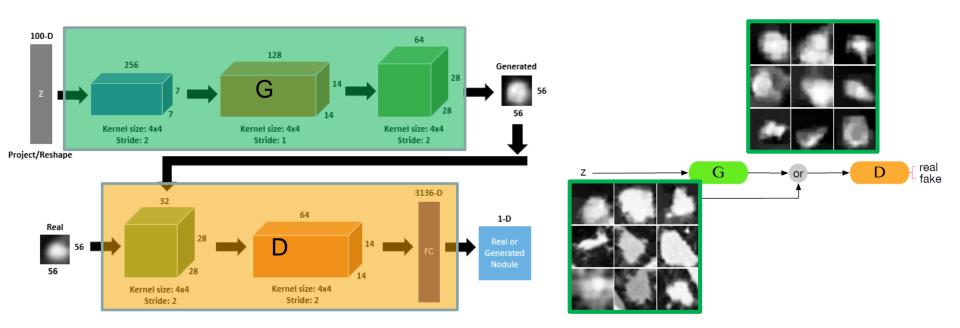
Architecture:



Loss Function: Same as Goodfellow 2014



©Chuquicusma 2018

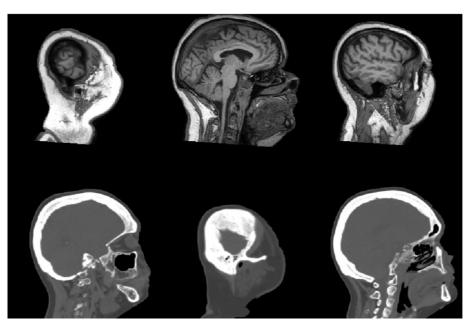


©Chuquicusma 2018

- Radiotherapy treatment planning
 - MR: Segmentation of tumor and organs
 - CT: Dose planning

- Radiotherapy treatment planning
 - MR: Segmentation of tumor and organs
 - CT: Dose planning

- MR-only radiotherapy treatment planning
 - Synthesize CT



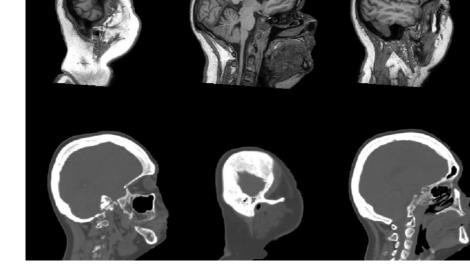
Unpaired data

©Wolterink 2017

- Radiotherapy treatment planning
 - MR: Segmentation of tumor and organs
 - CT: Dose planning

- MR-only radiotherapy treatment planning
 - Synthesize CT

Re-purpose Cycle-GAN

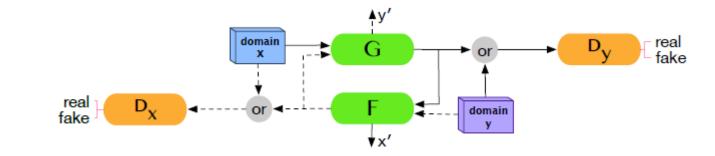


Unpaired data

©Wolterink 2017

ent planning

- I/P: Image (Domain X)
- O/P: Image (Domain Y)

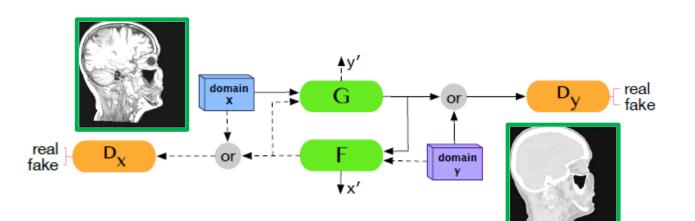


Architecture:

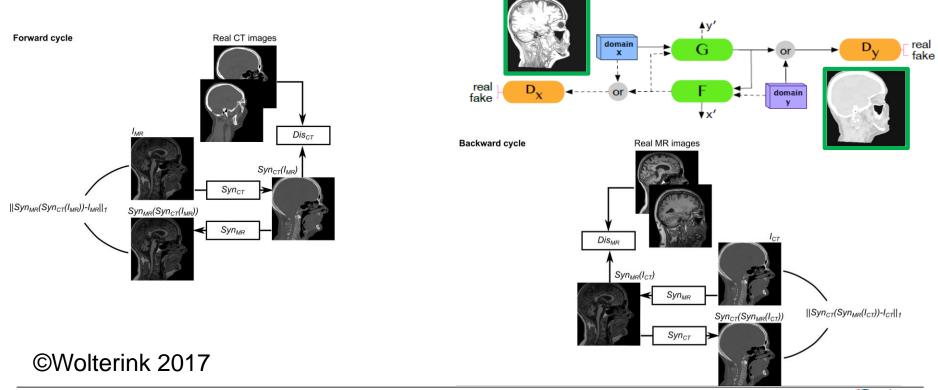
Loss Function: Cycle Loss

- I/P: MR
- O/P: CT

Architecture:

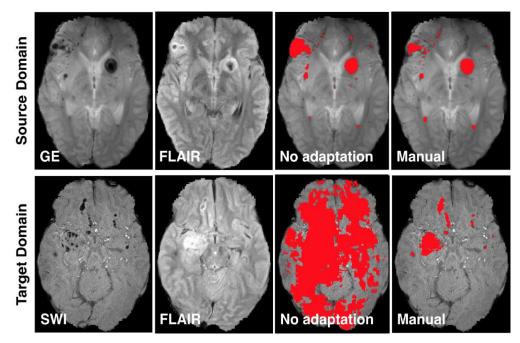


Loss Function: Cycle Loss (Sum of L1 norms at MR and CT)



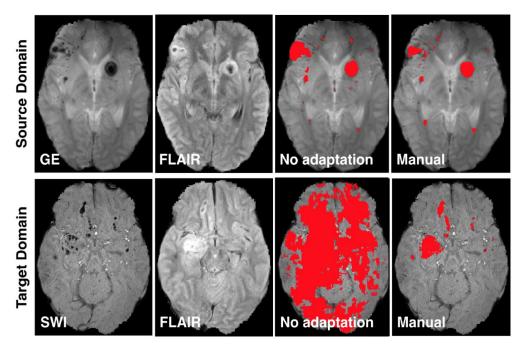
- Deep Learning Segmentation
 - Performs well in same domain
 - Degrades with new domain

- Deep Learning Segmentation
 - Performs well in same domain
 - Degrades with new domain
- Traumatic Brain Injury
 - Segment bleeding



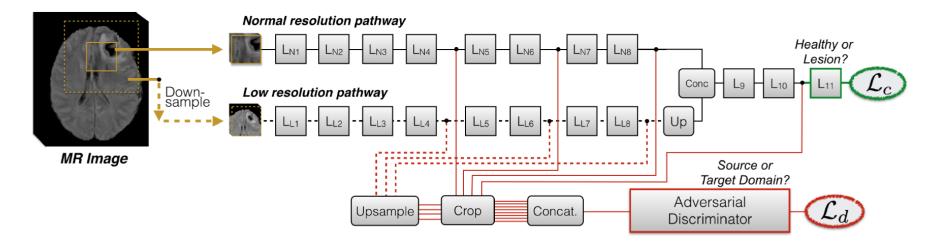
©Kamnitsas 2017

- Deep Learning Segmentation
 - Performs well in same domain
 - Degrades with new domain
- Traumatic Brain Injury
 - Segment bleeding
- Learn domain invariant features
 - Auxiliary task Adversarial

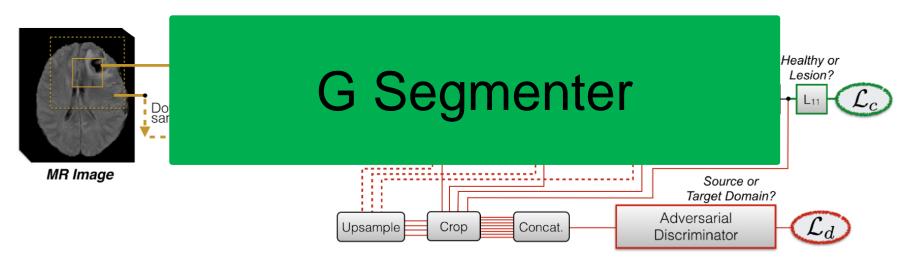


©Kamnitsas 2017

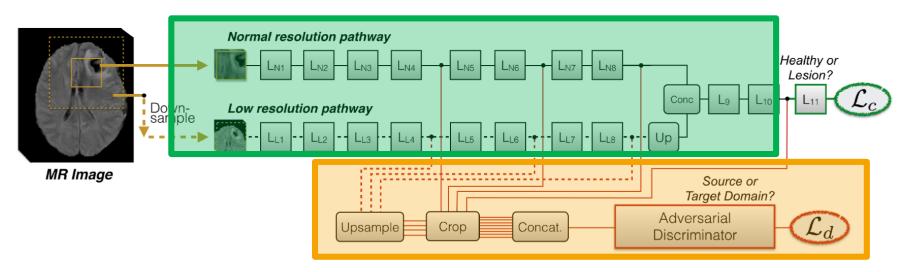
Different MR sequences

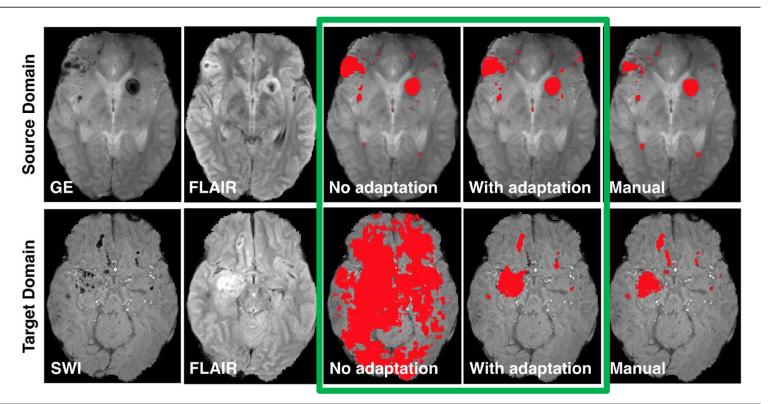


Different MR sequences



Different MR sequences





©Kamnitsas 2017

Limitations of GAN

© slate.com

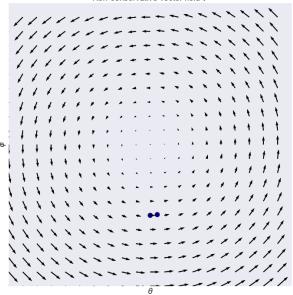
Limitations of GAN

- Numerical Instability
 - Mode Collapse

Extreme example

- Constant curl vector
 - Non-conservative
- Arises naturally in zero-sum game
 - Follow arrow like simultaneous gradient ascent
 - Though has equilibrium at (0,0)
- Initial Solution
 - Numerics of GAN (Reading List)

Non-conservative vector field v



Limitations of GAN

- Numerical Instability
 - Mode Collapse
- Evaluation
 - Metrics

Limitations of GAN - Practical

Counting Medical Equivalent Cell Images

Limitations of GAN - Practical

Counting Medical Equivalent Cell Images

Medical Equivalent Cross domain synthesis

Perspective

Limitations of GAN - Practical

Medical Equivalent Cell Images

Medical Equivalent Cross domain synthesis Medical Equivalent Reconstruction

Reading List

Review: GANs for Medical Image Analysis

- Engineering
 - DC-GAN
 - <u>C-GAN</u>
 - CycleGAN
- GAN applications
 - Living Review
 - Wolterink 2017
 - Kamnitsas 2017
 - Chuquicusma 2018

- Theory
 - Numerics of GANs
 - Are GANs Created Equal?
 - <u>f-GANs</u>
- Blogs
 - Off the convex Path
 - GAN Open Problems
- MICCAI 2019 Tutorial
 - Lecturers: Me, J. Wolterink, K. Kamnitsas

Summary

- GANs Unsupervised generative models with adversarial twist
- When done correctly
 - Realistic-looking images of unprecedented quality
- Medical Imaging
 - Synthesis proxy for training data
 - Domain shift
- Issues
 - Numerical Instability
 - Evaluation metric

https://arxiv.org/abs/1809.06222

GANs for Medical Image Analysis

Salome Kazeminia^{a,1}, Christoph Baur^{b,1}, Arjan Kuijper^c, Bram van Ginneken^d, Nassir Navab^b, Shadi Albarqouni^b, Anirban Mukhopadhyay^a

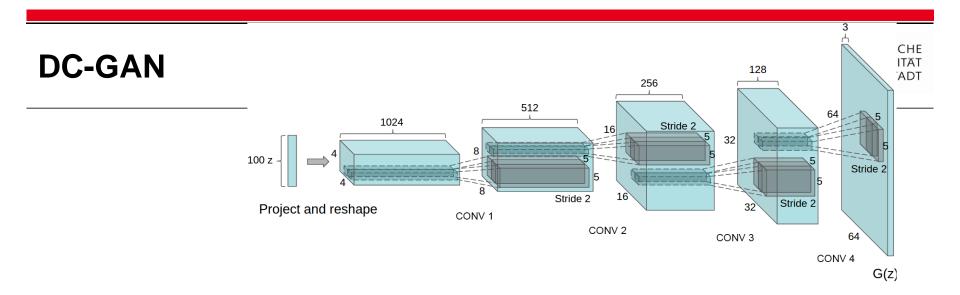
^aDepartment of Computer Science, TU Darmstadt, Germany ^bComputer Aided Medical Procedures (CAMP), TU Munich, Germany ^cFraunhofer IGD, Darmstadt, Germany ^dRadboud University Medical Center, Nijmegen, The Netherlands

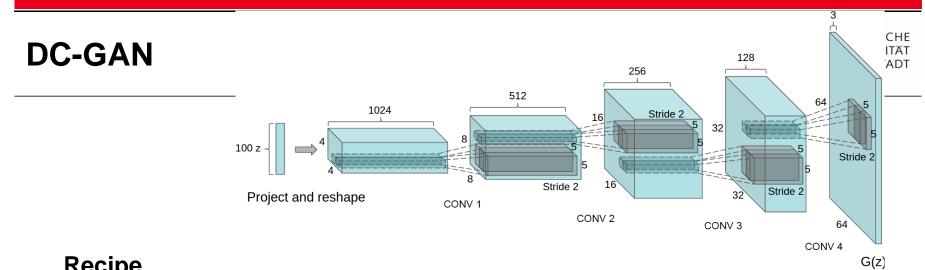
TECHNISCHE

UNIVERSITÄT DARMSTADT

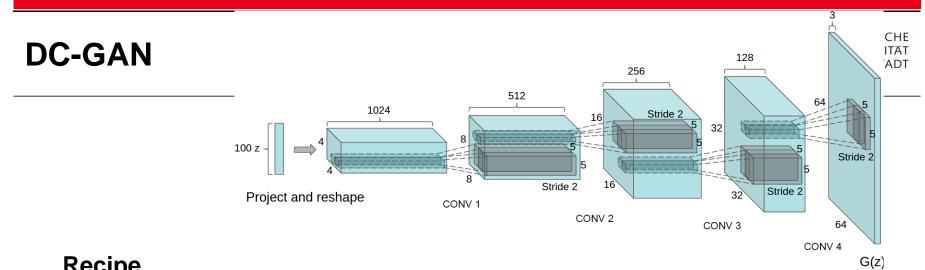
Thank You!

Backup Slides





- Recipe
- Replace pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).



Recipe

- Replace pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm
- Use LeakyReLU in discriminator

Synthesis

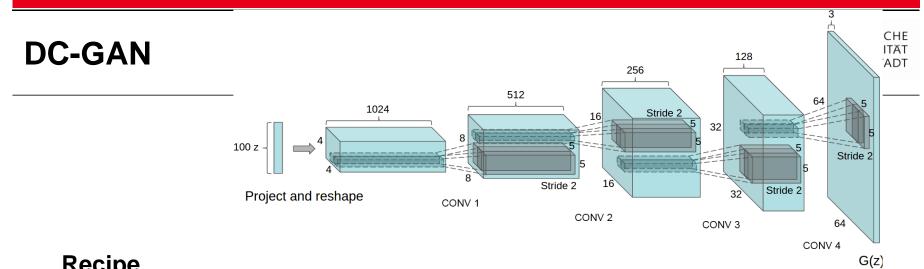
Unconditnl. (DC-GAN)

- Data Simulation
 - Class Imbalance
 - Data Augmentation

Conditnl. (C-/ Cycle-GAN)

- CT from MR
- PET from CT/ MRI
- Stain Normalization

- Prostate Lesions
- Retina Patches
- Skin Lesions



Recipe

- Replace pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm
- Use LeakyReLU in discriminator
- Use ReLU in generator for all layers except output, which uses Tanh.

