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 Generative vs. Discriminative

 Generating “realistic-looking” images –

one step closer to understanding it
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GAN Results
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What is in it for me?

MR to CT Reconstruction Anomaly Detection
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Proxy for training data

Costly annotation
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Proxy for training data

Costly annotation

 Imbalance

Similarity metric

Discriminator

What is in it for me?
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Proxy for training data

Costly annotation

 Imbalance

Similarity metric

Discriminator

Domain Shift

Adversarial training

What is in it for me?
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Tidying Up GAN – the Marie Kondo way
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Theory

 UNSUPERVISED Learning
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Theory

 UNSUPERVISED Learning

 Perplexity

 pdf for the generated distribution
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Critique G – Calculating Perplexity 
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 UNSUPERVISED Learning

 Perplexity

 Idea 1: Sidestep perplexity with deep nets

 Idea 2: Gradient feedback from discriminator

 Idea 3: Game of many moves
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 Idea 1: Sidestep perplexity with deep nets

18

z G
Image

G(z)

Similarity of Preal and Psynth

Deep Net D – maps images to [0,1]

Ex[D(x)] is high if xϵ Preal

Ex[D(x)] is low if xϵ Psynth

Train using Backpropagation
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 Generative vs. Discriminative

 UNSUPERVISED Learning

 Perplexity

 Idea 1: Sidestep perplexity with deep nets

 Idea 2: Gradient feedback from discriminator
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z G
Image

G(z)

Goal of generator G:

Ez[D(G(z))] is as high as possible 

Fooling Discriminator

Backpropagation through D(G(.))
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For Goodfellow 2014

f(x) = log(x)



Theory

 Generative vs. Discriminative

 UNSUPERVISED Learning

 Perplexity

 Idea 1: Sidestep perplexity with deep nets

 Idea 2: Gradient feedback from discriminator

 Idea 3: Game of many moves
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For Goodfellow 2014

f(x) = log(x)

Derivative of log(x) = 1/x

Training sensitive to instances 

that D finds awful



Understanding Key GANs

Engineering Recipe

© giphy.com

Theory Tidy GANs
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Understanding Key GANs

Engineering Recipe

 I/P, O/P

Architecture

Loss Function
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Understanding Key GANs

Engineering Recipe

 I/P, O/P

Architecture

Loss Function

DC-GAN

C-GAN

Cycle-GAN
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Deep Convolutional GAN (DC-GAN)

 Unsupervised 

 Representation Learning
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Deep Convolutional GAN (DC-GAN)

 Unsupervised 

 Representation Learning

 Latent space Interpolation
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Deep Convolutional GAN

 I/P: Z (100-D multivariate Gaussian)

 O/P: Image
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DC-GAN

 I/P: Z (100-D multivariate Gaussian)

 O/P: Image

 Architecture:

32



DC-GAN

 I/P: Z

 O/P: Image

 Architecture:
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DC-GAN

 I/P: Z

 O/P: Image

 Architecture:

 Loss Function: Same as Goodfellow 2014
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Conditional GAN (C-GAN)

 How to bring in some supervision?
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Conditional GAN (C-GAN)

 I/P: Z, Condition

 O/P: Image
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C-GAN

 I/P: Z, Condition

 O/P: Image

 Architecture:
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C-GAN

 I/P: Z, Condition(c)

 O/P: Image

 Architecture:

 Loss Function:
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Cycle-GAN

 How to incorporate unpaired images for style/ domain transfer? 
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Cycle-GAN

 I/P: Image (Domain X)

 O/P: Image (Domain Y)
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Cycle-GAN

 I/P: Image (Domain X)

 O/P: Image (Domain Y)

 Architecture:
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Cycle-GAN

 I/P: Image (Domain X)

 O/P: Image (Domain Y)

 Architecture:
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Cycle-GAN

 I/P: Image (Domain X)

 O/P: Image (Domain Y)

 Architecture:

 Loss Function
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Cycle-GAN

 I/P: Image (Domain X)

 O/P: Image (Domain Y)

 Architecture:

 Loss Function
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Engineering Recipe Summary
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GANs I/P O/P Architect. Loss Note

DC-GAN z Img GAN Unsup.

C-GAN z,c Img Modif. 

GAN

Cond. 

Supervis.

Cycle-GAN Img

(X)

Img

(Y)

Cycle 

Loss

Style 

Transfer
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Medical Applications

 Review article

 77 papers are reviewed

 Till end of 2018

 Incl. MICCAI, MiDL, ISBI, TMI, 

MedIA etc.
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Medical Applications

 Review article

 77 papers are reviewed

 Till end of 2018
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 Mostly applied in

 Synthesis

 Segmentation
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Medical Applications

 Review article

 77 papers are reviewed

 Till end of 2018

 Incl. MICCAI, MiDL, ISBI, TMI, 

MedIA etc.

 Mostly applied in

 Synthesis

 Segmentation

 Pattern

 Modify Architecture

 Modify Loss

 Re-apply the recipe
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Synthesis - Unsupervised

 Discriminating Lung Nodules

 Benign

 Malign
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Synthesis - Unsupervised

 Discriminating Lung Nodules

 Benign

 Malign

 Unsupervised synthesis

 Modify DC-GAN
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Synthesis - Unsupervised

 Discriminating Lung Nodules

 Benign

 Malign

 Unsupervised synthesis

 Modify DC-GAN

 Visual Turing Test

 2 radiologists

53

©Chuquicusma 2018



Synthesis - Unsupervised

 I/P: Z

 O/P: Image (64X64X3)

 Architecture:

 Loss Function: Same as Goodfellow 2014
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Synthesis - Unsupervised

 I/P: Z

 O/P: Lung Nodule image (56X56X1)

 Architecture:

 Loss Function: Same as Goodfellow 2014
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Synthesis - Unsupervised
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Synthesis - Unsupervised
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Synthesis - Supervised

 Radiotherapy treatment planning

 MR: Segmentation of tumor and organs

 CT: Dose planning
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Synthesis - Supervised

 Radiotherapy treatment planning

 MR: Segmentation of tumor and organs

 CT: Dose planning

 MR-only radiotherapy treatment 

planning

 Synthesize CT
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Synthesis - Supervised

 Radiotherapy treatment planning

 MR: Segmentation of tumor and organs

 CT: Dose planning

 MR-only radiotherapy treatment 

planning

 Synthesize CT

 Re-purpose Cycle-GAN
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Synthesis - Supervised 

 I/P: Image (Domain X)

 O/P: Image (Domain Y)

 Architecture:

 Loss Function: Cycle Loss

61



Synthesis - Supervised 

 I/P: MR

 O/P: CT

 Architecture:

 Loss Function: Cycle Loss (Sum of L1 norms 

at MR and CT)
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Synthesis - Supervised 
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Domain Adaptation - Adversarial Learning

 Deep Learning Segmentation

 Performs well in same domain 

 Degrades with new domain 
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Domain Adaptation - Adversarial Learning

 Deep Learning Segmentation

 Performs well in same domain 

 Degrades with new domain 

 Traumatic Brain Injury

 Segment bleeding
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Domain Adaptation - Adversarial Learning

 Deep Learning Segmentation

 Performs well in same domain 

 Degrades with new domain 

 Traumatic Brain Injury

 Segment bleeding

 Learn domain invariant 

features

 Auxiliary task - Adversarial
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Domain Adaptation - Adversarial Learning

 Different MR sequences

 Source Domain

 Target Domain

 Typical Deep Learning fails
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Domain Adaptation - Adversarial Learning

 Different MR sequences

 Source Domain

 Target Domain

 Typical Deep Learning fails
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Domain Adaptation - Adversarial Learning

 Different MR sequences

 Source Domain

 Target Domain

 Typical Deep Learning fails
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Domain Adaptation - Adversarial Learning
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Limitations of GAN

71

© slate.com



Limitations of GAN

 Numerical Instability

 Mode Collapse
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Extreme example

 Constant curl vector

 Non-conservative

 Arises naturally in zero-sum game

 Follow arrow like simultaneous 

gradient ascent

 Though has equilibrium at (0,0)

 Initial Solution

 Numerics of GAN (Reading List)
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Limitations of GAN

 Numerical Instability

 Mode Collapse

 Evaluation

 Metrics
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Limitations of GAN - Practical

Counting

75

Medical Equivalent

Cell Images



Limitations of GAN - Practical

Counting Perspective
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Medical Equivalent

Cell Images

Medical Equivalent

Cross domain synthesis



Limitations of GAN - Practical

Counting Global StructurePerspective
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Medical Equivalent

Cell Images

Medical Equivalent

Cross domain synthesis

Medical Equivalent

Reconstruction



Reading List

 Engineering

 DC-GAN

 C-GAN

 CycleGAN

 GAN applications

 Living Review

 Wolterink 2017

 Kamnitsas 2017

 Chuquicusma 2018

 Theory

 Numerics of GANs

 Are GANs Created Equal?

 f-GANs

 Blogs

 Off the convex Path

 GAN Open Problems

 MICCAI 2019 Tutorial

 Lecturers: Me, J. Wolterink, K. 

Kamnitsas
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Review: GANs for Medical Image Analysis

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1703.10593
http://livingreview.in.tum.de/GANs_for_Medical_Applications/
https://arxiv.org/abs/1708.01155
https://arxiv.org/abs/1612.08894
https://arxiv.org/abs/1710.09762
https://arxiv.org/abs/1705.10461
https://arxiv.org/abs/1711.10337
https://arxiv.org/abs/1606.00709
http://www.offconvex.org/
https://distill.pub/2019/gan-open-problems/


Summary

 GANs – Unsupervised generative models with adversarial twist

 When done correctly

 Realistic-looking images of unprecedented quality

 Medical Imaging

 Synthesis - proxy for training data

 Domain shift

 Issues

 Numerical Instability

 Evaluation metric
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Thank You!
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Backup Slides
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DC-GAN



DC-GAN

Recipe

 Replace pooling layers with strided convolutions (discriminator) and 

fractional-strided convolutions (generator).



DC-GAN

Recipe

 Replace pooling layers with strided convolutions (discriminator) and 

fractional-strided convolutions (generator).

 Use batchnorm

 Use LeakyReLU in discriminator



Synthesis

Unconditnl. (DC-GAN)

Data Simulation

 Class Imbalance

 Data Augmentation

Prostate Lesions

Retina Patches

Skin Lesions

Conditnl. (C-/ Cycle-GAN)

CT from MR

PET from CT/ MRI

Stain Normalization
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DC-GAN

Recipe

 Replace pooling layers with strided convolutions (discriminator) and 

fractional-strided convolutions (generator).

 Use batchnorm

 Use LeakyReLU in discriminator

 Use ReLU in generator for all layers except output, which uses Tanh.


