Basics of machine learning Nicolas Duchateau, Rémi Emonet, Carole Lartizien
Deep Learning for Medical Imaging
Lvon (FR) - 15/04/2019

Program	
~30min	1. Introduction Carole Lartizien
~75min	2. Supervised learning Rémi Emonet + Carole Lartizien
~75min	3. Unsupervised learning Nicolas Duchateau + Rémi Emonet
~30min	4. Methods evaluation Carole Lartizien + Rémi Emonet + Nicolas Duchateau
~30min	5. Conclusion

4. Methods evaluation

Supervised learning in a nutshell

- Split the sample dataset into three parts : a training, a validation and a test dataset
- Choose a parameterized model function with parameters Θ_1 and hyperparameters Θ_2 from an hypothesis space H
- Fit the model parameters Θ_1 to the training dataset for a fixed value of Θ_2
 - **Choose an error function** that measures the misfit between the decision function D(f(xi)) and the class yi of all training data points (xi, yi)
 - Minimize the error function
- Evaluate the performance of your model on the validation dataset
- Retrain your model with another hyperparameter set Θ_2
- Select the best parameter set
- Evaluate the performance of your best model on the test dataset

4. Methods evaluation

Supervised learning in a nutshell

- Split the sample dataset into three parts : a training, a validation and a test dataset
- Choose a parameterized model function with parameters Θ_1 and hyperparameters Θ_2 from an hypothesis space H
- Fit the model parameters Θ_1 to the training dataset for a fixed value of Θ_2
 - Choose an error function that measures the misfit between the decision function D(f(xi)) and the class yi of all training data points (xi, yi)
 - Minimize the error function
- Evaluate the performance of your model on the validation dataset
- Retrain your model with another hyperparameter set Θ_2
- Select the best parameter set
- Evaluate the performance of your best model on the test dataset

4. Methods evaluation
Metrics for the evaluation of supervised classification models
Sensitivity = Fraction of true positives = TP/(TP+FN)
Specificity = Fraction of true negatives = TN/(TN+FP)
Accuracy = Fraction of correct answers =(TN+TP)/(TN+TP+FN+FP)

. Meth	ods evaluation
Supe	rvised learning
Hold-c	put
	Principle :
	\circ Split the dataset into one learning and one validation dataset
	 Learn a model on the training dataset and evaluate its performance on the validation dataset
	Advantages :
	 Easy to implement
	 Low computational cost
	Bottlenecks:
	 Requires a lot of data
	 Sensitive to the database splitting
	 Robustness of the results

4. Methods evaluation

K-folds cross-validation

- Choose a number of folds k
- Split the dataset into k subsets D_1, \ldots, D_k
- For each subset k:
 - Learn the model on the union of \boldsymbol{D}_{j} subsets with j \neq i
 - Evaluate the performances on fold D_i
 - Combine performances achieved on all folds D_i

if k = N (the number of samples) \rightarrow leave-one-out (LOO)

4. Methods evaluation

Cross-validation

- Advantages :
 - Easy to implement
 - Make use of all available data to estimate the model performance

15

• Limits :

- Sensitive to the splitting strategy
- High computational time
- Do not provide a model

4. Methods evaluation Bootstrap 2. Draw one bootstrap dataset \mathbf{x}^{*b} by randomling sampling N samples with replacement from the original dataset x 1: for b = 1 to B do 3. Estimate the performance metric by 2: $\mathbf{x}^{*b} \leftarrow \text{bootstrap}(\mathbf{x})$ hold-out on the sample x*b 3: $w^b \leftarrow AUC(\mathbf{x}^{*b}, \mathbf{x}^{*b}) - AUC(\mathbf{x}^{*b}, \mathbf{x})$ 4. Estimate the performance metric of the 4: end for model trained \mathbf{x}^{*b} and tested on \mathbf{x} 5: $w \leftarrow \text{moy}_{b=1..B}(w^b)$ 6: $AUC_{ORD} \leftarrow AUC(\mathbf{x}, \mathbf{x}) - w$ 5. Compute an estimate of the bias of the hold-out method 6. Evaluate the performance metric by subtracting the estimated bias w from the hold-out performance estimated on the original dataset **x**

4. Methods evaluation	
Unsupervised <u>1) Neighborhood graph:</u> short-circuit? Real data = unknown → Possible option = measure that can assess the prese	ence of a short-circuit
Node flow:	
Provide under the second secon	All connected !

Program	
~30min	1. Introduction Carole Lartizien
~75min	2. Supervised learning Rémi Emonet + Carole Lartizien
~75min	3. Unsupervised learning Nicolas Duchateau + Rémi Emonet
~30min	4. Methods evaluation Carole Lartizien + Rémi Emonet + Nicolas Duchateau
	5. Conclusions / to go further

Fake	home message
→ Su ♦ ♦ ♦	pervised / unsupervised Can handle complex data Proper definition of your problem vs. application Proper evaluation is required Transparency = open code, open data
→ Fo ♦	 r medical imaging applications: "Standard" learning = already powerful to go beyond simple statistics Specificities of medical data vs. computer vision or data science High dimension Specific properties (ex: tensor)

5.Conclusions

Take-home message... and challenges

- → Supervised / unsupervised / semi-supervised
 - Can handle complex data
 - Proper definition of your problem vs. application
 - Proper evaluation is required
 - ◆ Transparency = open code, open data
 - Mixing multiple heterogeneous descriptors?

→ For medical imaging applications:

- "Standard" learning = already powerful to go beyond simple statistics
- Specificities of **medical data** vs. computer vision or data science
 - High dimension
 - Specific properties (ex: tensor)
 - Real life data = quality / completeness / amount
 - Physiological prior
 - Consequences of uncertainties?

5.Conclusions

Take-home message... and challenges

- → Supervised / unsupervised / semi-supervised
 - Can handle complex data
 - Proper definition of your problem vs. application
 - Proper evaluation is required
 - Transparency = open code, open data
 - Mixing multiple heterogeneous descriptors?

→ For medical imaging applications:

- Standard" learning = already powerful to go beyond simple statistics
- Specificities of **medical data** vs. computer vision or data science
 - High dimension
 - Specific properties (ex: tensor)
 - **Real life** data = quality / completeness / amount
 - Physiological prior
 - Consequences of uncertainties?

Thanks !... Any questions?