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Supervised learning in a nutshell

.

● Split the sample dataset into three parts : a training, a validation and a test dataset

● Choose a parameterized model function with parameters Q1 and hyperparameters
Q2 from an hypothesis space H

● Fit the model parameters Q1 to the training dataset for a fixed value of Q2 

○ Choose an error function that measures the misfit between the  decision
function D(f(xi)) and the class yi of all training data points (xi, yi)

○ Minimize the error function

● Evaluate the performance of your model on the validation dataset

● Retrain your model with another hyperparameter set Q2 

● Select the best parameter set

● Evaluate the performance of your best model on the test dataset

4. Methods evaluation
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Objective and definitions

● To estimate the intrinsic performance of a decision model

● The empirical error on the training dataset is optimistically biased

● The generalization error is the error achieved on new dataset representative of

the data distribution P, ie data different from the training database.

● How to estimate the generalization error from samples drawn from the data

distribution?

4. Methods evaluation

Supervised learning

Performance evaluation on a dataset of N samples in a representation space of 

dimension d: 

○ What performance metric?

○ What method to best approximate the generalization performance?

6

4. Methods evaluation

Objective and definitions

Supervised learning

Metrics for the evaluation of supervised classification
models

True Negative
TN

False positive
FP

False negative
FN

True Positive
TP

Estimated class
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4. Methods evaluation

Confusion matrix

●Sensitivity = Fraction of true positives = TP/(TP+FN) 

●Specificity = Fraction of true negatives  = TN/(TN+FP)

●Accuracy = Fraction of correct answers =(TN+TP)/(TN+TP+FN+FP)

4. Methods evaluation

Metrics for the evaluation of supervised classification
models
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Seuil=0

AUC

AUC = Area under the ROC curve

H(w, b) ={x ∊ ℝd | wtx + b = 0}

Class -1

Class 1

H(w, b) ={x ∊ ℝd | wtx + b’ = 0}

4. Methods evaluation

Metrics for the evaluation of supervised classification
models

Extension to the multi-class case

4. Methods evaluation

Supervised learning

4. Methods evaluation

Supervised learning

Metrics for the evaluation of segmentation tasks
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Hold-out

● Principle :

○ Split the dataset into one learning and one validation dataset

○ Learn a model on the training dataset and evaluate its performance 
on the validation dataset

● Advantages :

○ Easy to implement

○ Low computational cost

● Bottlenecks:

○ Requires a lot of data

○ Sensitive to the database splitting

○ Robustness of the results

4. Methods evaluation

Supervised learning
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K-folds cross-validation

4. Methods evaluation

• Choose a number of folds k

• Split the dataset into k subsets D1, . . . , Dk

• For each subset k:

• Learn the model on the union of Dj subsets with j ≠ i

• Evaluate the performances on fold  Di

• Combine performances achieved on all folds Dj

if k = N (the number of samples)  leave-one-out (LOO) 

Cross-validation

[source : Cours de F. Rossi, Telecom ParisTech]

4. Methods evaluation

Performance 
evaluation

Learning

Learning

Test

Test

• Advantages :

• Easy to implement

• Make use of all available data to estimate the model performance

• Limits :

• Sensitive to the splitting strategy

• High computational time

• Do not provide a model

Cross-validation

15

4. Methods evaluation

Bootstrap

4. Methods evaluation

2. Draw one bootstrap dataset x*b by
randomling sampling N samples with
replacement from the original dataset x

3. Estimate the performance metric by
hold-out on the sample x*b

4. Estimate the performance metric of the
model trained x*b and tested on x

5. Compute an estimate of the bias of the
hold-out method

6. Evaluate the performance metric by
subtracting the estimated bias w from
the hold-out performance estimated on
the original dataset x
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Bootstrap

• Advantages :
– Easy to implement
– Make use of all available data to estimate the model 

performance
– Provide confidence intervals

• Limits :
– High computational time
– Do not provide a model

4. Methods evaluation 4. Methods evaluation

Unsupervised… 

no “ground truth” labels = not so easy?

➔ Some pratical examples
(but highly depends on the data + clinical question)

4. Methods evaluation

Unsupervised

1) Neighborhood graph: short-circuit?

Synthetic data = easy?

Estimated embeddingsDuchateau et al. Med Image Anal  2012

4. Methods evaluation

Unsupervised

1) Neighborhood graph: short-circuit?

Synthetic data = easy?

Estimated embeddingsDuchateau et al. Med Image Anal  2012

Error vs. geodesic distance

Synthetic data
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4. Methods evaluation

Unsupervised

1) Neighborhood graph: short-circuit?

Real data = unknown… 
➔ Possible option = measure that can assess the presence of a short-circuit

Duchateau et al. Med Image Anal  2012

Node flow:

Number of shortest paths 
passing on an edge

K=20 K=5 K=20

4. Methods evaluation

Unsupervised
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Synthetic data

4. Methods evaluation

Unsupervised

1) Neighborhood graph: short-circuit?

Real data = unknown… 
➔ Possible option = measure that can assess the presence of a short-circuit

Duchateau et al. Med Image Anal  2012

Node flow:

All connected !

Real data

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On synthetic/clear data, already 
known

Input space Ground truth 
embedding

Duchateau et al. Med Image Anal  2012
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4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?

Duchateau et al. Med Image Anal  2012

Theoretical error
ex: error vs. geodesic distance
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Gerber et al. Med Image Anal  2010

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?

● Compactness = data explained by few dimensions?

● Generalization ability = error in reconstructing known cases?

● Specificity = consistency of generated new data?

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?

Duchateau et al. Med Image Anal  2012

Theoretical error
ex: error vs. geodesic distance

Generating
new casesLeave one out

reconstruction

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?

Sanchez-Martinez et al. Med Image Anal  2017

Error vs. existing (arguable) clinical labels:

Stability of low-dimensional 
coordinates:

Change in first 
200 dimensions

Cikes et al. Eur J Heart Fail  2019
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4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?

Cikes et al. Eur J Heart Fail  2019

Consistency of clusters

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?
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Consistency of clusters
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4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?

Cikes et al. Eur J Heart Fail  2019

vs. risk stratification:

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?

Cikes et al. Eur J Heart Fail  2019

vs. risk stratification:
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4. Methods evaluation

Unsupervised

3) Linear / non-linear:

vs. physiological consistency:

Duchateau et al. Med Image Anal  2012

vs. explanatory power:

Linear

Non-linear
Linear

Non-linear
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5. Conclusions / to go further

5. Conclusions

Take-home message

➔ Supervised / unsupervised
◆ Can handle complex data
◆ Proper definition of your problem vs. application
◆ Proper evaluation is required
◆ Transparency = open code, open data

➔ For medical imaging applications:
◆ “Standard” learning = already powerful to go beyond simple statistics
◆ Specificities of medical data vs. computer vision or data science

● High dimension
● Specific properties (ex: tensor)
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5.Conclusions

Take-home message… and challenges

➔ Supervised / unsupervised / semi-supervised
◆ Can handle complex data
◆ Proper definition of your problem vs. application
◆ Proper evaluation is required
◆ Transparency = open code, open data
◆ Mixing multiple heterogeneous descriptors?

➔ For medical imaging applications:
◆ “Standard” learning = already powerful to go beyond simple statistics
◆ Specificities of medical data vs. computer vision or data science

● High dimension
● Specific properties (ex: tensor)

● Real life data = quality / completeness / amount
● Physiological prior
● Consequences of uncertainties?
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◆ Proper definition of your problem vs. application
◆ Proper evaluation is required
◆ Transparency = open code, open data
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Thanks !... Any questions?

5.Conclusions


