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4. Methods evaluation

Supervised learning in a nutshell

® Choose a parameterized model function with parameters ®, and hyperparameters
®, from an hypothesis space H

e Fit the model parameters ®, to the training dataset for a fixed value of ®,

o Choose an error function that measures the misfit between the decision
function D(f(xi)) and the class yi of all training data points (xi, yi)

o Minimize the error function

4. Methods evaluation

Supervised learning in a nutshell

e Split the sample dataset into three parts : a training, a validation and a test dataset

°
e Evaluate the performance of your model on the validation dataset
® Retrain your model with another hyperparameter set ©,

e Select the best parameter set

e Evaluate the performance of your best model on the test dataset
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4. Methods evaluation
Supervised learning

Objective and definitions

® To estimate the intrinsic performance of a decision model
e The empirical error on the training dataset is optimistically biased

e The generalization error is the error achieved on new dataset representative of

the data distribution P, ie data different from the training database.

® How to estimate the generalization error from samples drawn from the data

distribution?

4. Methods evaluation
Supervised learning

Objective and definitions

Performance evaluation on a dataset of N samples in a representation space of
dimension d:

O What performance metric?

O What method to best approximate the generalization performance?

4. Methods evaluation

Metrics for the evaluation of supervised classification
models
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4. Methods evaluation

Metrics for the evaluation of supervised classification
models

= Fraction of true positives = TP/(TP+FN)

= Fraction of true negatives = TN/(TN+FP)

= Fraction of correct answers =(TN+TP)/(TN+TP+FN+FP)
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4. Methods evaluation

Metrics for the evaluation of supervised classification
models

= Area under the ROC curve Seuil=0.3
Seuil=0.5

Sensitivity
(True positives)

Hw,b)={x e RY| wix + b =0}
Class 1

rate
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+ Class -1

H(w,b)={x e RY| wix + b’ =0}

4. Methods evaluation

Supervised learning

Extension to the multi-class case

Matrice de confusion multi-classes
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4. Methods evaluation

Supervised learning

Metrics for the evaluation of segmentation tasks
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4. Methods evaluation
Supervised learning

Hold-out

® Principle :
O Split the dataset into one learning and one validation dataset

O Learn a model on the training dataset and evaluate its performance
on the validation dataset

® Advantages :
O Easy to implement
O Low computational cost
® Bottlenecks:
O Requires a lot of data
O Sensitive to the database splitting

O Robustness of the results
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4. Methods evaluation

K-folds cross-validation

¢ Choose a number of folds k

¢ Split the dataset into k subsets D,, ..., Dy

¢ For each subset k:
* Learn the model on the union of D; subsets with j # i
* Evaluate the performances on fold D;

* Combine performances achieved on all folds D;

if k= N (the number of samples) = leave-one-out (LOO)

4. Methods evaluation

Cross-validation
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4. Methods evaluation

Cross-validation

® Advantages :
® Easy to implement

* Make use of all available data to estimate the model performance

® Limits:
® Sensitive to the splitting strategy
* High computational time

¢ Do not provide a model

4. Methods evaluation
Bootstrap

2. Draw one bootstrap dataset x™ by
randomling sampling N samples with
replacement from the original dataset x

3. Estimate the performance metric by forb=1to Bdo

hold-out on the sample x® x*? « bootstrap(x)
4. Est|(rj'ne|1te t.hedpe:gorn(;ance dmetr|c of the & enid for
model trained x™ and tested on x P———
5. Compute an estimate of the bias of the 6: AUCopp — AUC(x,X) —w

hold-out method

6. Evaluate the performance metric by
subtracting the estimated bias w from
the hold-out performance estimated on
the original dataset x

1
2
3 wh e AUC(x*b, x*?) - AUC(x*,x)
4
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4. Methods evaluation

Bootstrap

® Advantages:
— Easy to implement
— Make use of all available data to estimate the model
performance
— Provide confidence intervals

® Limits:
— High computational time
— Do not provide a model

4. Methods evaluation

Unsupervised...
no “ground truth” labels = not so easy?

- Some pratical examples
(but highly depends on the data + clinical question)

4. Methods evaluation

Unsupervised

1) Neighborhood graph:

Synthetic data = easy?

short-circuit?
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Duchateau et al. Med Image Anal 2012

4. Methods evaluation

== Geodesic distance
v Euclidean distance

Unsupervised

1) Neighborhood graph:

Synthetic data = easy?

short-circuit?
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4. Methods evaluation

Unsupervised

1) Neighborhood graph: short-circuit?

Real data = unknown...
- Possible option = measure that can assess the presence of a short-circuit

K
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4. Methods evaluation

Unsupervised

1) Neighborhood graph: short-circuit?

Real data = unknown...
- Possible option = measure that can assess the presence of a short-circuit
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4. Methods evaluation

Unsupervised

1) Neighborhood graph: short-circuit?

Real data = unknown...
- Possible option = measure that can assess the presence of a short-circuit

Node flow:

0L . v .. - Real data

All connected !

Node flow F,..,
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Duchateau et al. Med Image Anal 2012

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters:
known

On synthetic/clear data, already
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Input space Ground truth
embedding

Duchateau et al. Med Image Anal 2012
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4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data=?

== Geodesic distance
s Euclidean distance Theoretical error
ex: error vs. geodesic distance
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4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data=?

e Compactness = data explained by few dimensions?
e Generalization ability = error in reconstructing known cases?

e Specificity = consistency of generated new data?

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data=?
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4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data = ?

Stability of low-dimensional
coordinates:

Error vs. existing (arguable) clinical labels: Refarence = 200 subjects of the whole OS
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4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data=?

Consistency of clusters

Conaietency « 0%

Consiasency « B Consntency = 91%
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Unsupervised

4. Methods evaluation

2) Dimensionality / clusters:

On real data = ?

Consistency of clusters

4. Methods evaluation

Unsupervised

2) Dimensionality / clusters: On real data=?

vs. risk stratification:
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4. Methods evaluation

Unsupervised

2) Dimensionality / clusters:

vs. risk stratification:

Training (75% database)
Treatment Effect by Phenogroups
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On real data = ?

Validation (25% database)
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4. Methods evaluation

Unsupervised

3) Linear / non-linear:

vs. physiological consistency:

Linear I | L “ ‘I

PCA
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4. Methods evaluation

Unsupervised

3) Linear / non-linear:
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5. Conclusions / to go further

5. Conclusions

Take-home message

- Supervised / unsupervised
4 Can handle complex data
& Proper definition of your problem vs. application
® Proper evaluation is required
& Transparency = open code, open data

- For medical imaging applications:
& “Standard” learning = already powerful to go beyond simple statistics

& Specificities of medical data vs. computer vision or data science

e High dimension

e Specific properties (ex: tensor)




5.Conclusions

Take-home message... and challenges

- Supervised / unsupervised / semi-supervised
Can handle complex data

Proper definition of your problem vs. application
Proper evaluation is required

Transparency = open code, open data

Mixing multiple heterogeneous descriptors?

LR 2R 2K 2R 4

- For medical imaging applications:

& “Standard” learning = already powerful to go beyond simple statistics
& Specificities of medical data vs. computer vision or data science

High dimension

Specific properties (ex: tensor)

Real life data = quality / completeness / amount
Physiological prior

Consequences of uncertainties?

5.Conclusions

Thanks !... Any questions?
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