Program

~30min **1. Introduction** Carole Lartizien

~75min**2. Supervised learning**Rémi Emonet + Carole Lartizien

~75min **3. Unsupervised learning** Nicolas Duchateau + Rémi Emonet

~30min

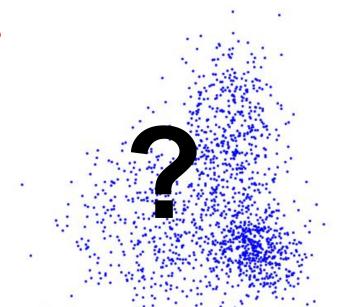
4. Methods evaluation Carole Lartizien + Rémi Emonet + Nicolas Duchateau

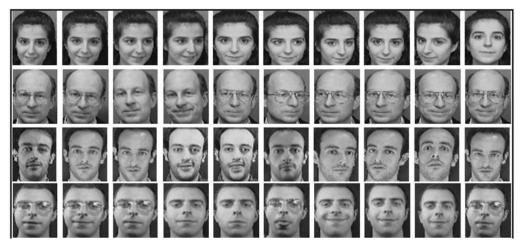
5. Conclusions / to go further

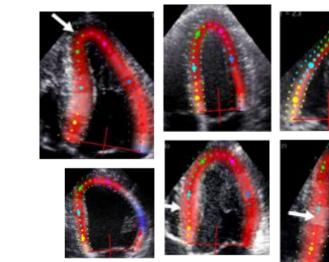
- 3. Unsupervised learning
 - Why not using labels?

Why not using labels?

→ No labels available







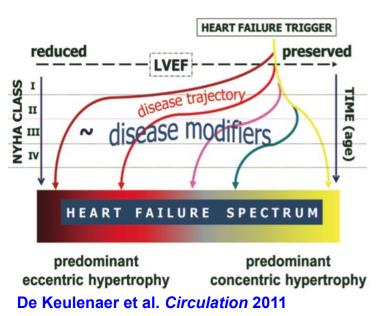
Myocardial strain patterns

ORL database

Why not using labels?

- → No labels available
- → Low relevance of labels

Continuum of disease



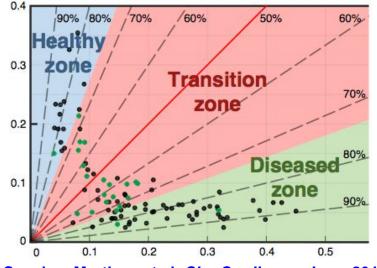
ACC/AHA stages of HF	Stage A	Subcl	Stage	B lial dysfunction	Stages Heart fa	
Geometrical Description Pathophysiological	Normal Risk factors (e.g.	Concentric remodeling Myocardial	Concentric hypertrophy	Eccentric hypertrophy Myocardial dysfunction	Concentric hypertrophy	Eccentric hypertrophy
Description	DM/HTN)	Myocardial dysfunction with pEF		with rEF	HFpEF	HFrEF
Deposition (collagen, fibrosis, etc.)	1	Ť	1	<u>^</u>	ተተ	ተተተ
Dimensions	n	n/4	n	1	n	22
Thickness						
LV mass	n	n/个	Ť	1	n	17
EF	n	n		4	n	44
the second of the second se		n/个		1	$\uparrow \uparrow$	ተተተ
Wall stress	n	n/				
Wall stress GLS	n ↓	n/		**	44	444
	n ↓ n	n/		4.4 4	↓ ↓	11 11

Why not using labels?

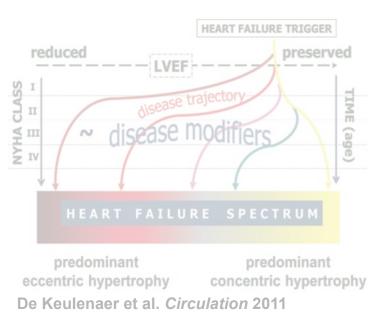
- → No labels available
- → Low relevance of labels

Continuum of disease

ex: heart failure preserved ejection



Sanchez-Martinez et al. Circ Cardiovasc Imag 2018



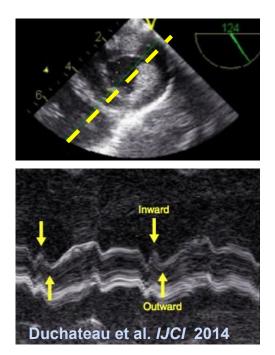
ACC/AHA stages of HF	Stage A	Stage B Subclinical myocardial dysfunction		Stages C&D Heart failure		
					0	\bigcirc
Geometrical Description	Normal	Concentric remodeling	Concentric hypertrophy	Eccentric hypertrophy	Concentric hypertrophy	Eccentric hypertrophy
Pathophysiological Description	Risk factors (e.g. DM/HTN)	Myocardial dysfunction with pEF		Myocardial dysfunction with rEF	HFpEF	HFrEF
Deposition (collagen, fibrosis, etc.)	Ŷ	Ŷ	Ŷ	ተተ	ተተ	ተተተ
Dimensions	n	n/↓	n	^	n	4.0
LV mass		n/个	Ť	^	n	
EF	n		1	4	n	44
Wall stress	n	n/个		Ŷ	$\uparrow \uparrow$	ተተተ
GLS	\downarrow	4		44	44	444
GCS	n	n/个		4	Ť	44
GRS	n	n/↓		4	4	$\psi \psi$
				Omar et	al. Circ R	Res 2016

Why not using labels?

- → No labels available
- → Low relevance of labels
- → Limits of supervised approaches

ex: Cardiac Resynchronization Therapy (CRT)

- 30% of non-responders
- cases selected in a supervised way



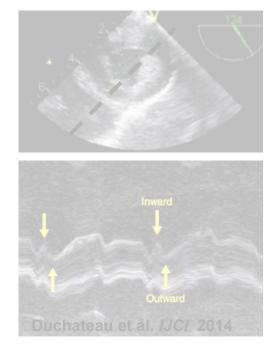
Why not using labels?

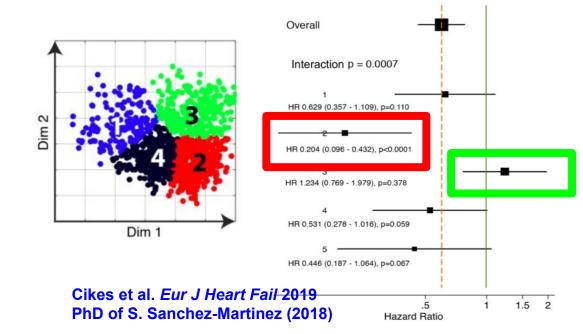
- → No labels available
- Low relevance of labels
- → Limits of supervised approaches

ex: Cardiac Resynchronization Therapy (CRT)

- 30% of non-responders
- cases selected in a supervised way

High-risk and low-risk clusters identified by unsupervised learning





Why not using labels?

- → No labels available
- → Low relevance of labels
- → Limits of supervised approaches

→ Or simply a different point of view?

Which end point for the application?

Which end point?

Subgroups identification / similar trends Detect novelty / unexpected values

- Understand the data space
- Statistical distances
- → Sampling/generate new cases

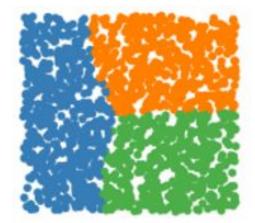
Clustering Outliers detection

(low-dimensional) embedding

Manifold learning

Reconstruction

Clustering



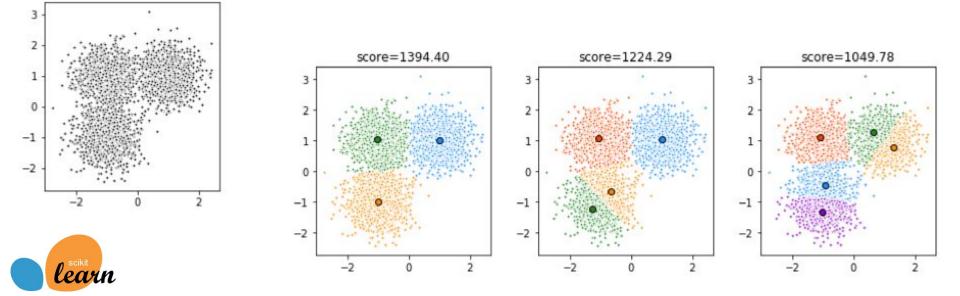
Clustering

→ K-means

<u>Parameter</u> = *K* (number of clusters) $\mathbf{S} = \{S_1, S_2, \dots, S_K\}$

Idea = minimize the within-cluster variance

$$\hat{\mathbf{S}} = \operatorname*{argmin}_{\mathbf{S}} \sum_{k=1}^{K} \sum_{\mathbf{v} \in \mathcal{S}_k} \|\mathbf{v} - \mu_k\|^2$$
 (distance to each centroid)

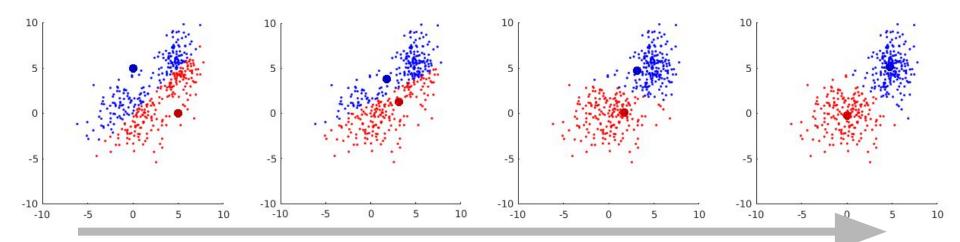


Clustering

→ K-means

Lloyd's algorithm:

- 1. Initialize centroids (e.g. K random samples)
- 2. Assign each sample to its nearest centroid
- 3. Update centroids as average of assigned samples



Clustering

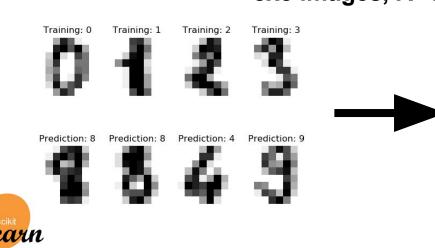
→ K-means

Lloyd's algorithm:

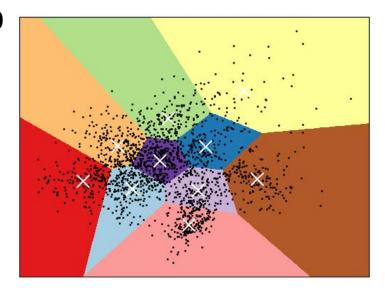
1. Initialize centroids (e.g. *K* random samples)
2. Assign each sample to its nearest centroid
3. Update centroids as average of assigned samples

Comments:

- converges to local minimum: needs several restarts
 simple cluster boundaries
 - not applicable in high dimension: reduce dimensionality first



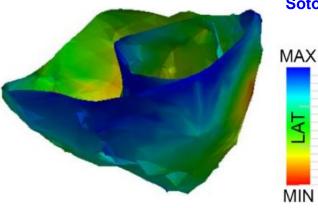
8x8 images, *K*=10



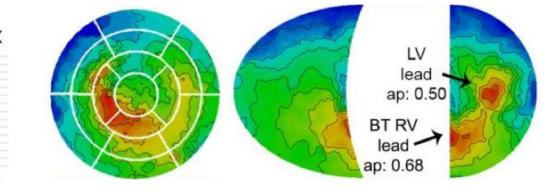
Clustering

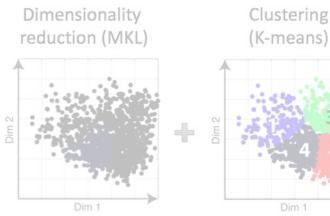
ex: cardiac resynchronization therapy

K-means

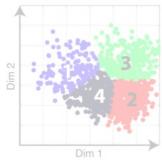


Lead location from electroanatomical activation maps Soto-Iglesis et al. IEEE J Transl Eng Health Med 2017





Low-dimensional space



Phenogroups

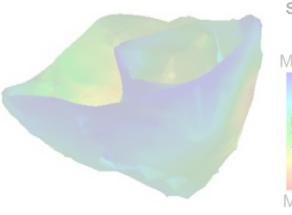
High-risk and low-risk clusters identified by <u>unsupervised</u> learning

> Cikes et al. Eur J Heart Fail 2019 PhD of S. Sanchez-Martinez (2018)

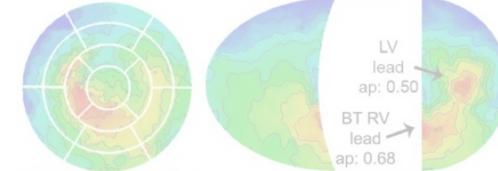
Clustering

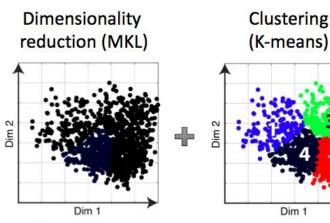
ex: cardiac resynchronization therapy

K-means

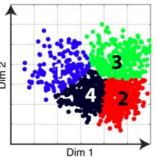


Lead location from electroanatomical activation maps Soto-Iglesis et al. IEEE J Transl Eng Health Med 2017





Low-dimensional space



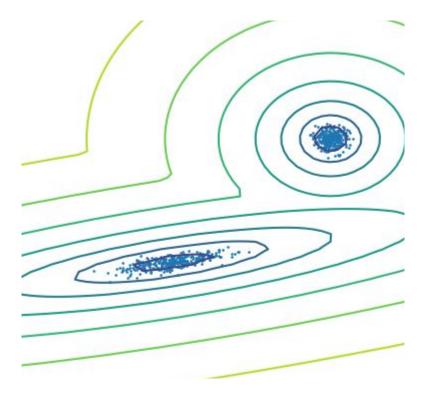
Phenogroups

High-risk and low-risk clusters identified by unsupervised learning

> Cikes et al. Eur J Heart Fail 2019 PhD of S. Sanchez-Martinez (2018)

Clustering

→ Gaussian mixture models

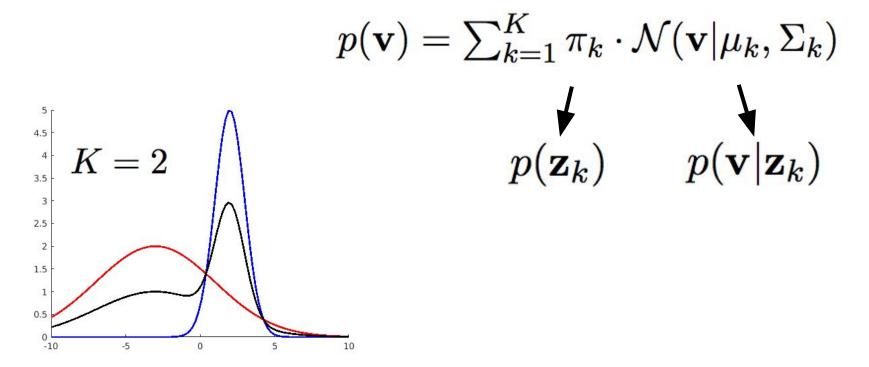


Clustering

→ Gaussian mixture models

Parameters = weights + mean + covariance of each Gaussian

Idea = samples generated from a mixture of *K* Gaussian ~ generalization of *K*-means



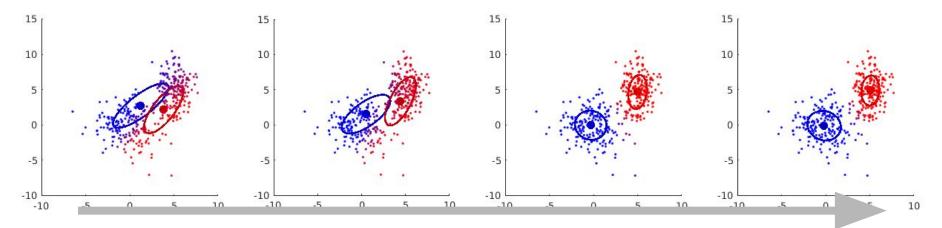
Clustering

→ Gaussian mixture models

<u>Algorithm</u> = Expectation-Maximization (EM)

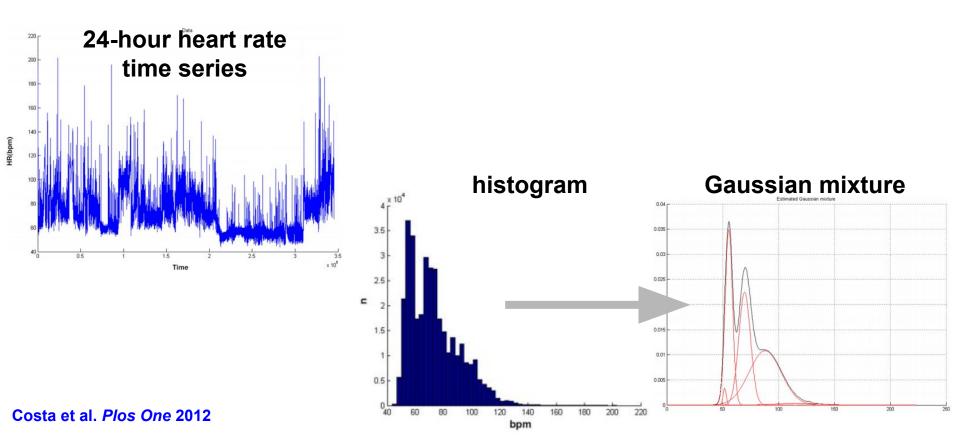
- 1. Initial random components (e.g. around K-means centroids)
- , 2. Compute probability at each point $\ \gamma_k^{(i)} \ = \ p(\mathbf{z}_k | \mathbf{v}^{(i)})$
- 3. Maximize likelihood / update parameters

$$\pi_k = \frac{1}{N} \sum_{i=1}^N \gamma_k^{(i)} \qquad \qquad \mu_k = \frac{1}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}_k} \gamma_k^{(i)} \mathbf{v}^{(i)} \\ \Sigma_k = \frac{1}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}_k} \gamma_k^{(i)} (\mathbf{v}^{(i)} - \mu_k) (\mathbf{v}^{(i)} - \mu_k)^T$$



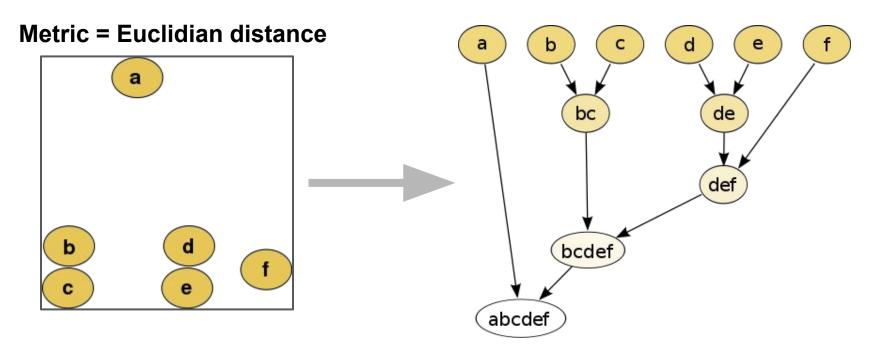
Clustering

→ Gaussian mixture models



Clustering

- → Hierarchical clustering
 - **<u>Agglomerate</u>** = 1 cluster for each sample + merging across the hierarchy
 - **Divise** = 1 single cluster + divise across the hierarchy



www.wikipedia.org

Clustering

Color Key

-1.5 0 +1.5 Value

ables

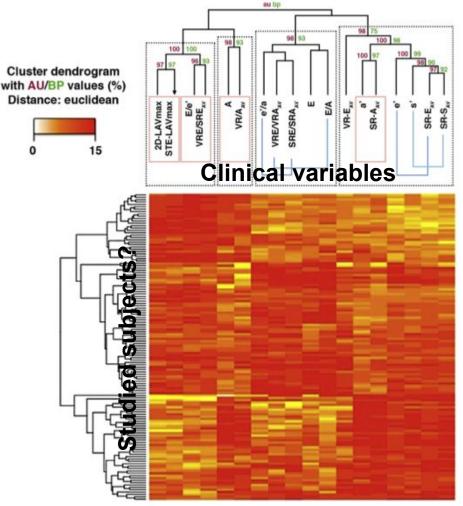
ω

Sa

Phenotyping ex: heart failure reduced / preserved ejection

Hierarchical clustering

Studied

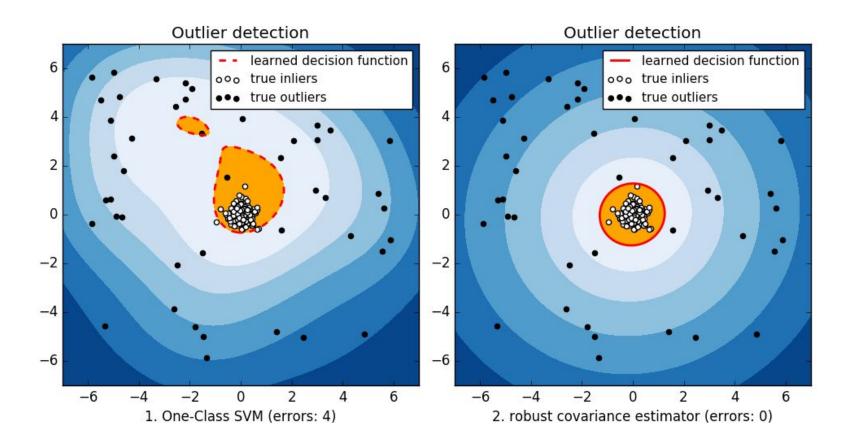


Shah et al. *Circulation* 2015

subjects

QRS-T angl Lateral e'

Outliers detection

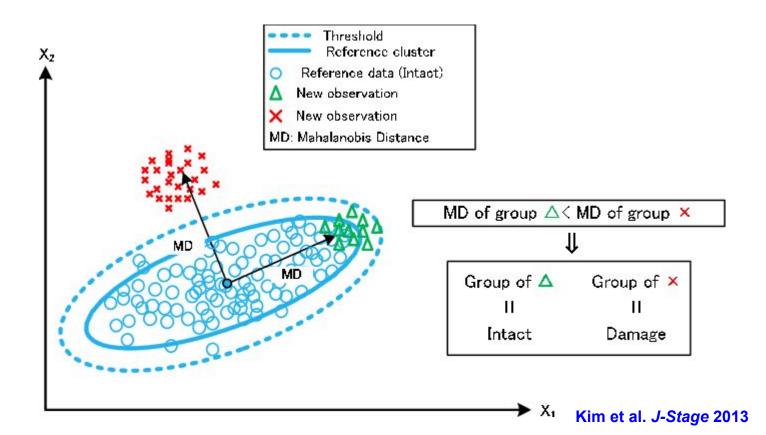


Outliers detection

Distribution fit + decision function

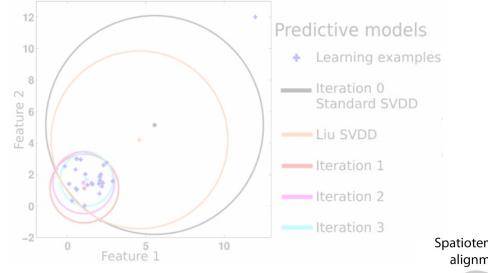
ex: Mahalanobis distance

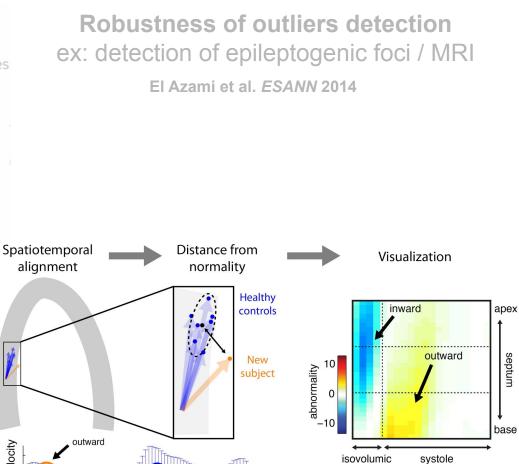
$$D_M(\mathbf{x}) = \sqrt{(\mathbf{x} - \mu_M)^T \Sigma_M^{-1} (\mathbf{x} - \mu_M)}$$



Outliers detection

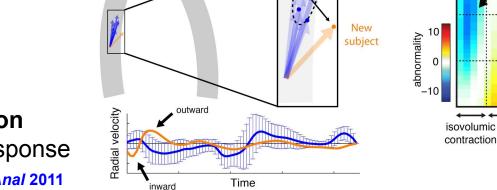
Distribution fit + decision function





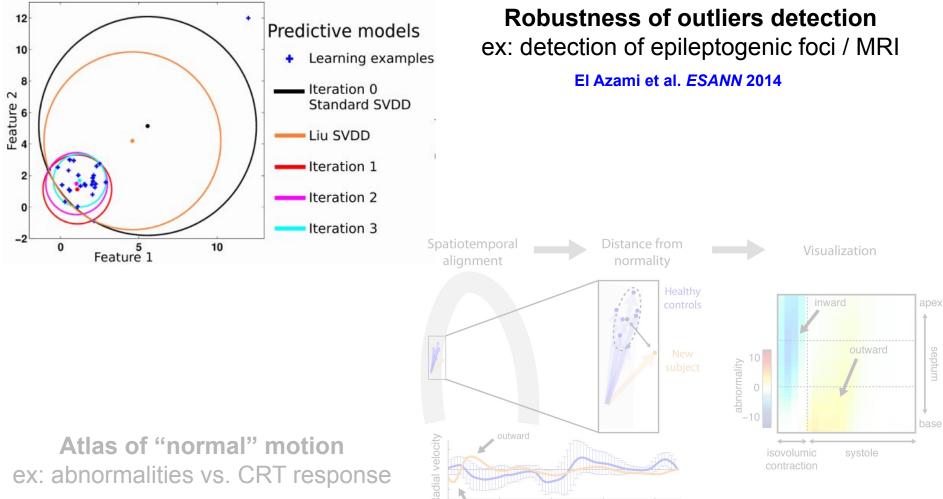
septum

Atlas of "normal" motion ex: abnormalities vs. CRT response Duchateau et al. Med Image Anal 2011



Outliers detection

Distribution fit + decision function



Duchateau et al. Med Image Anal 2011

Which end point?

Subgroups identification / similar trends Detect novelty / unexpected values

- Understand the data space
- Statistical distances
- → Sampling/generate new cases

Clustering Outliers detection

(low-dimensional) embedding

Manifold learning

Encoding/decoding

Which end point?

Key step = data representation

- → Subgroups identification / similar trends
- Detect novelty / unexpected values
- ➔ Understand the data space
- → Statistical distances
- → Sampling/generate new cases

Clustering Outliers detection

(low-dimensional) embedding

Manifold learning

Encoding/decoding

Representation learning

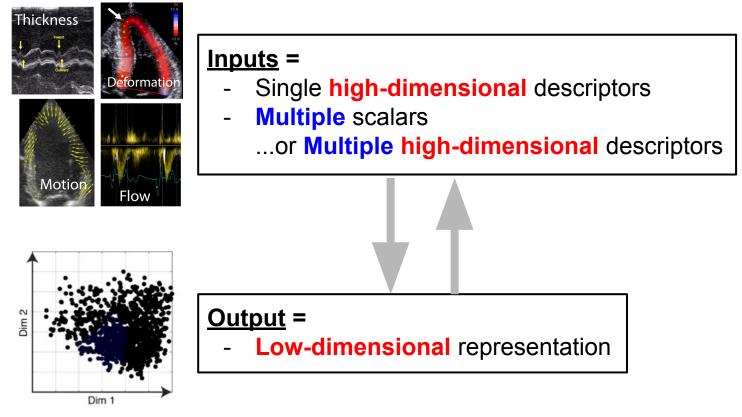
<u>Idea</u> = better represent the data space

- lower dimensional space
- unsupervised

Representation learning

<u>Idea</u> = better represent the data space - lower dimensional space

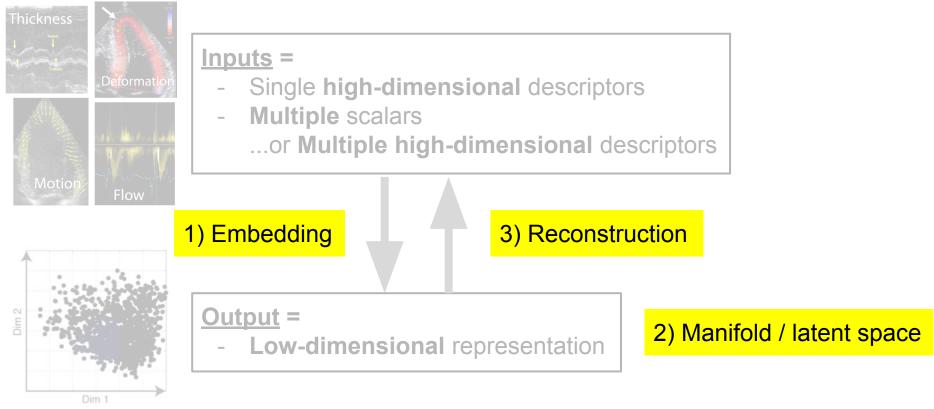
- unsupervised



Representation learning

<u>Idea</u> = better represent the data space

- lower dimensional space
- unsupervised



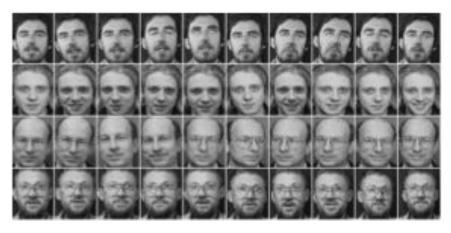
What for? = which space to work on?

Distances in **low dimension**? / Reconstructed cases in **high dimension**?

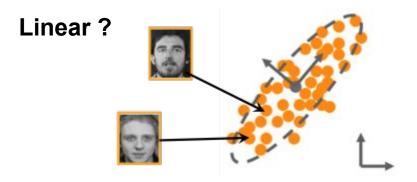
Representation learning

<u>Idea</u> = better represent the data space

→ "Structure" of the data space?



- lower dimensional space
- unsupervised



Representation learning

<u>Idea</u> = better represent the data space

→ "Structure" of the data space?

- lower dimensional space
- unsupervised

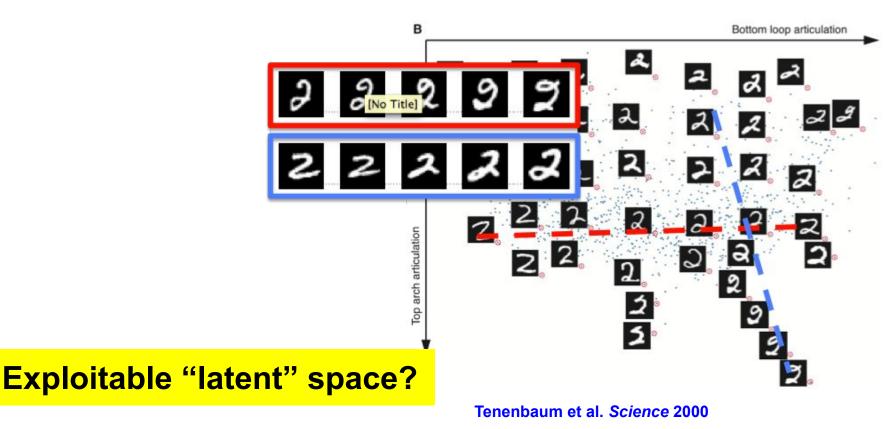


Representation learning

Idea = better represent the data space

→ "Structure" of the data space?

- lower dimensional space
- unsupervised



Low number of dimensions to encode high dimensional data variations

Representation learning

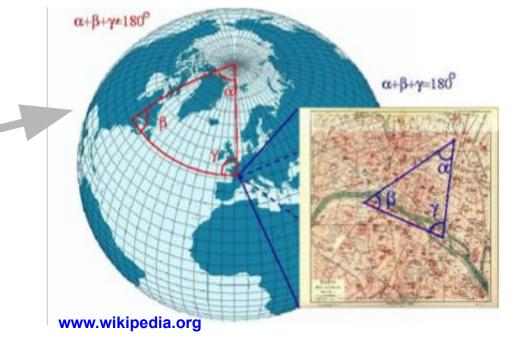
<u>Idea</u> = better represent the data space

"Structure" of the data space?

- lower dimensional space
- unsupervised

<u>Manifold of dimension N</u> = topological space that near each sample resembles (is homeomorphic to) a *N*-dimensional Euclidean space

- ex: lines and circles (*N*=1)
 - plane, sphere, surfaces (*N*=2)
 - brain images, cardiac shapes (N=?)



Representation learning

<u>Idea</u> = better represent the data space

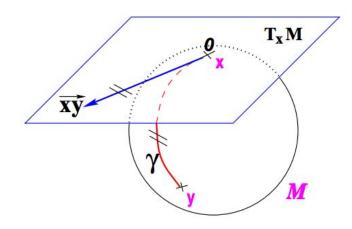
→ "Structure" of the data space?

Manifold of dimension N

In some cases = **known structure**

Vector space	Riemannian manifold
$\overrightarrow{xy} = y - x$	$\overrightarrow{xy} = \log_x(y)$
$y = x + \overrightarrow{xy}$	$y = \exp_x(\overrightarrow{xy})$

- lower dimensional space
- unsupervised



log-exponential mapping Pennec et al. Int J Comput Vis 2006

Representation learning

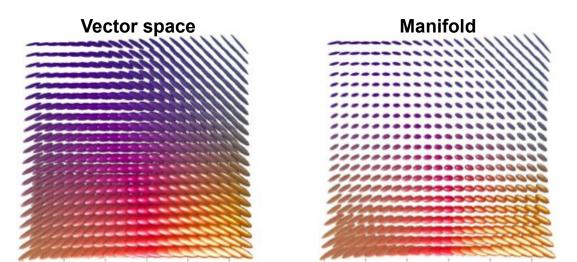
<u>Idea</u> = better represent the data space

→ "Structure" of the data space?

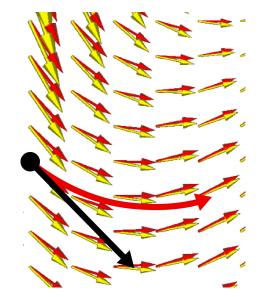
Manifold of dimension N

In some cases = known structure

- lower dimensional space
- unsupervised



ex: Interpolation of tensors (diffusion, strain) Pennec et al. Int J Comput Vis 2006



Diffeomorphic transformations (registration) Arsigny et al. *MICCAI* 2006

Representation learning

<u>Idea</u> = better represent the data space

→ "Structure" of the data space?

Manifold of dimension N

- In some cases = known structure
- Otherwise = <u>learn</u> it from data !

- lower dimensional space
- unsupervised

Representation learning

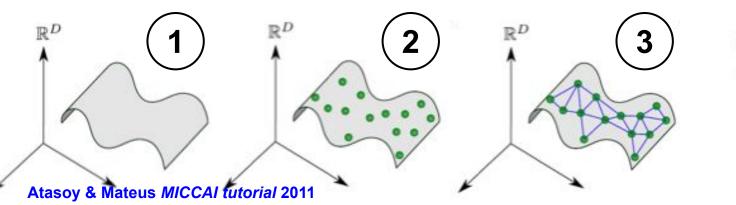
<u>Idea</u> = better represent the data space

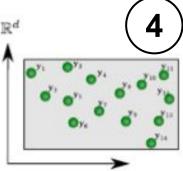
→ "Structure" of the data space?

Manifold of dimension N

In some cases = known structure

- Otherwise = <u>learn</u> it from data !
 - 1. Assumption = data lies on / close to a manifold
 - 2. Few samples (on the manifold) available
 - 3. **Neighborhood graph =** approximation of the manifold
 - 4. Dimensionality reduction = **spectral decomposition** of...?



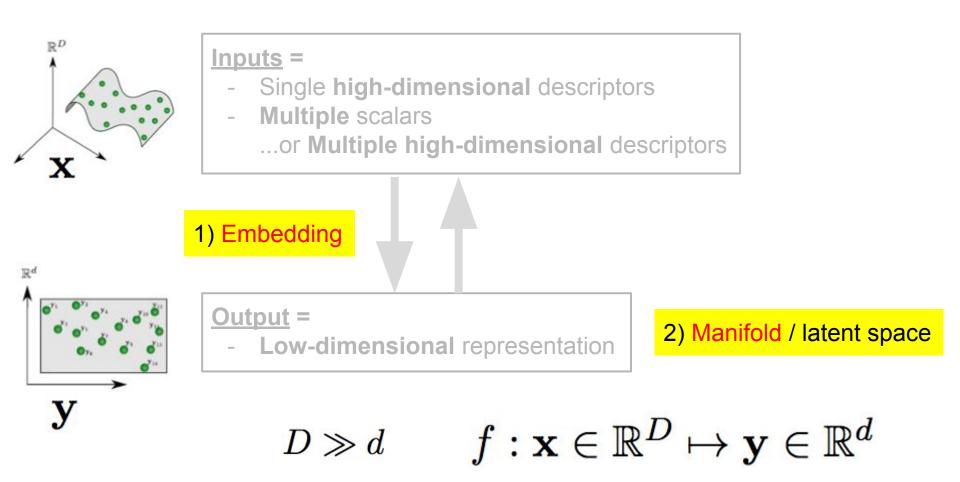


- lower dimensional space
- unsupervised

Representation learning

<u>Idea</u> = better represent the data space

- lower dimensional space
- unsupervised

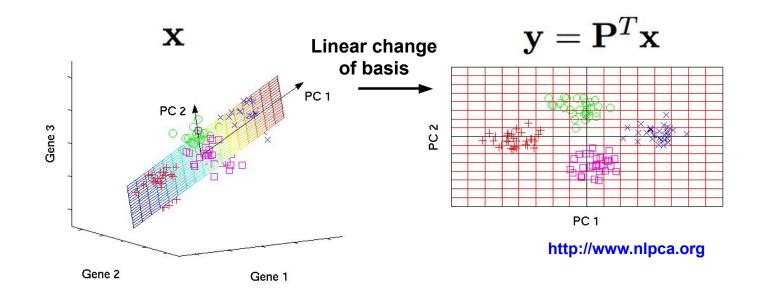


(low-dimensional) embedding: linear

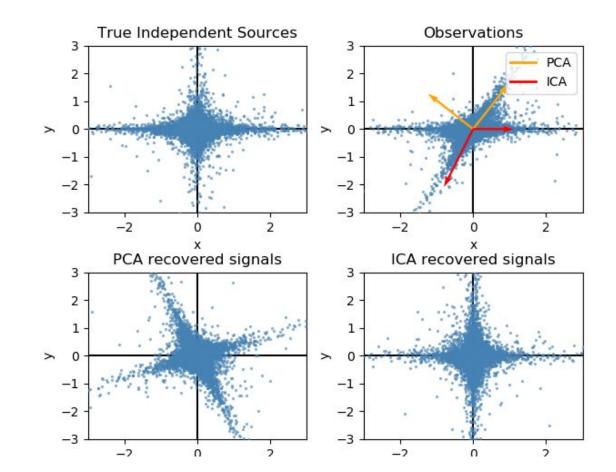
→ PCA = Principal Component Analysis

<u>Idea</u> = principal directions of variance \rightarrow diagonalize the covariance matrix

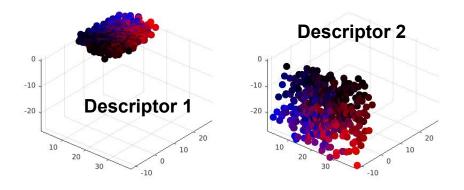
 $\Sigma = \mathbf{P} \mathbf{D} \mathbf{P}^T$



- → ICA = Independent Component Analysis
- Idea = Independent, non-Gaussian variables



To go further		Nb descriptors	Maximizes	
Principal Component Analysis	РСА	1	Variance	
Partial Least Squares	PLS	2+	Covariance	Wold et al. <i>Chemo</i> 1984
Canonical Correlation Analysis	CCA	2+	Correlation	Hotelling <i>Biometr</i> 1936



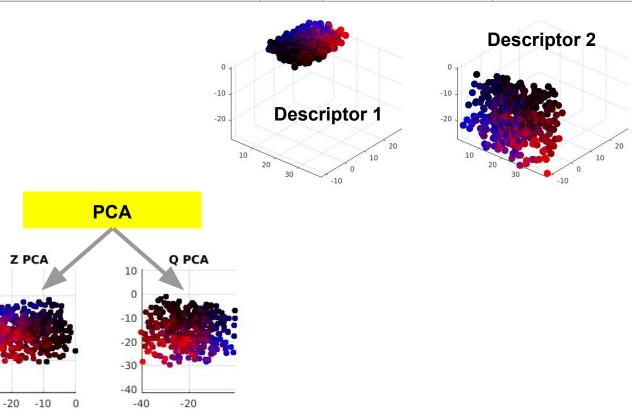
0

-10

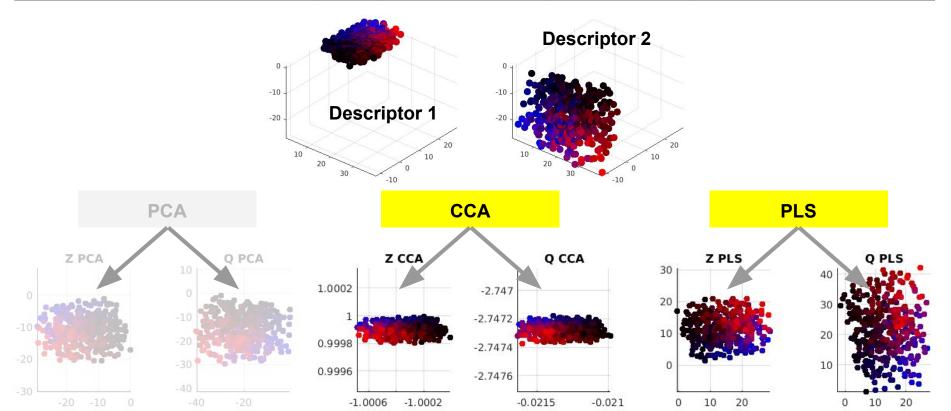
-20

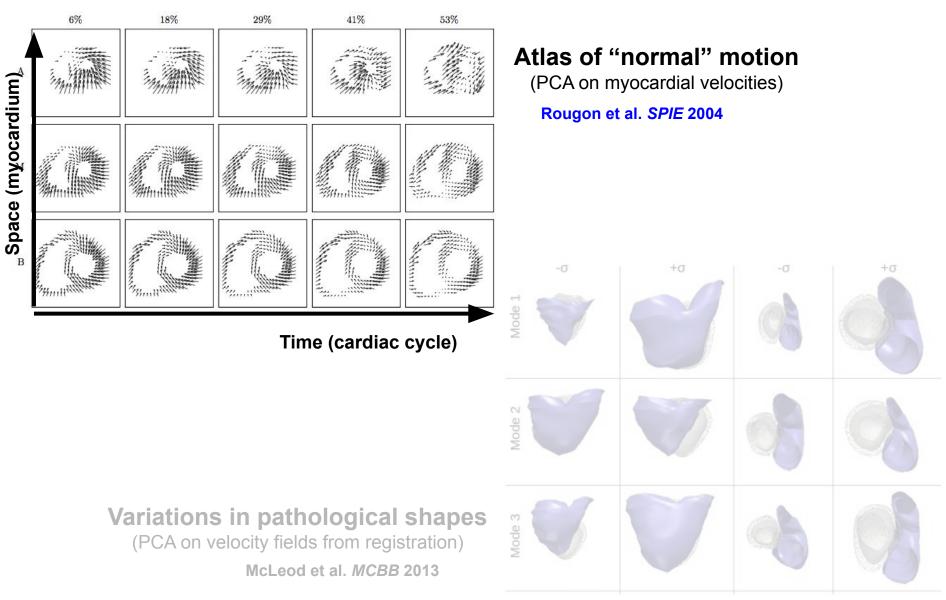
-30

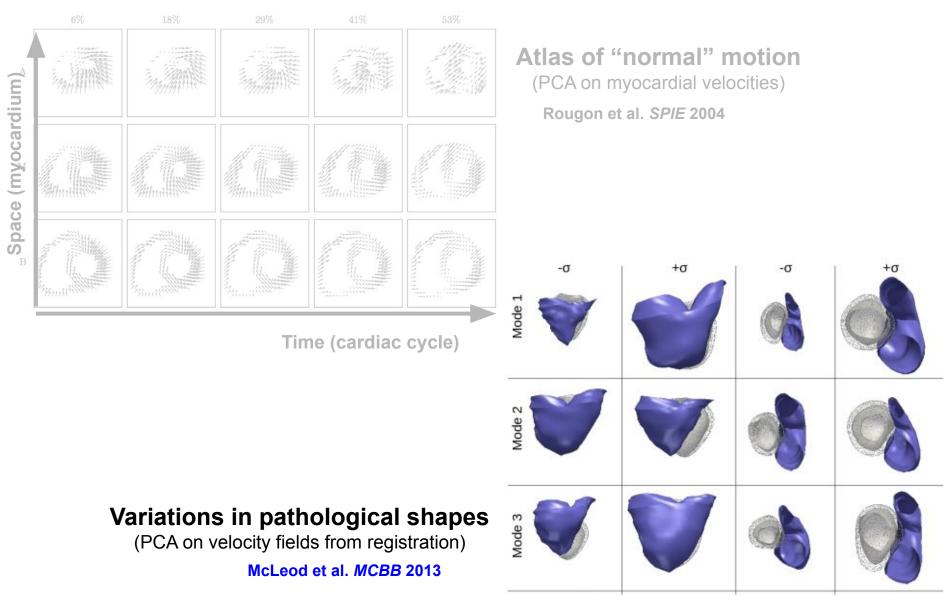
To go further		Nb descriptors	Maximizes	
Principal Component Analysis	РСА	1	Variance	
Partial Least Squares	PLS	2+	Covariance	Wold et al. <i>Chemo</i> 1984
Canonical Correlation Analysis	CCA	2+	Correlation	Hotelling <i>Biometr</i> 1936



To go further		Nb descriptors	Maximizes	
Principal Component Analysis	PCA	1	Variance	
Partial Least Squares	PLS	2+	Covariance	Wold et al. Chemo 1984
Canonical Correlation Analysis	CCA	2+	Correlation	Hotelling <i>Biometr</i> 1936







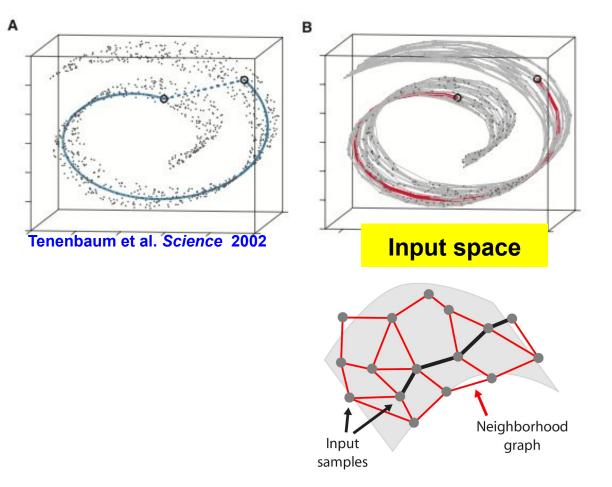
(low-dimensional) embedding: linear non-linear

(low-dimensional) embedding: linear non-linear

→ Isomap

Tenenbaum et al. Science 2002

Idea = approximate **geodesic distances** / shortest path along the graph

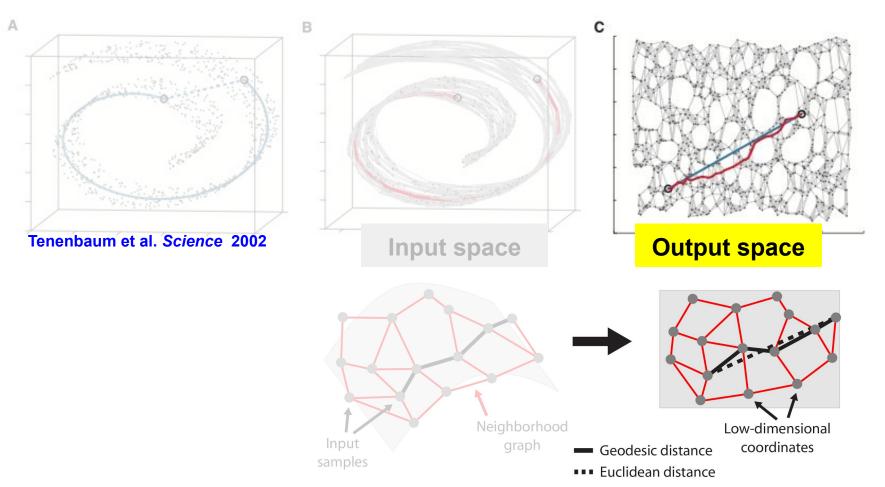


(low-dimensional) embedding: linear non-linear

→ Isomap

Tenenbaum et al. Science 2002

Idea = approximate geodesic distances / shortest path along the graph

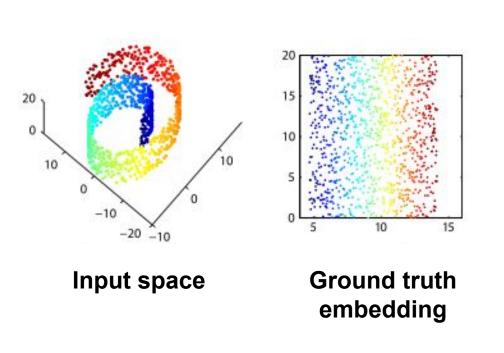


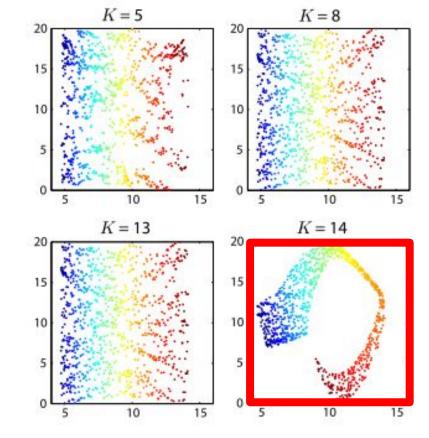
(low-dimensional) embedding: linear non-linear

→ Isomap

Tenenbaum et al. Science 2002

Parameter = number of neighbors *K* to build the graph



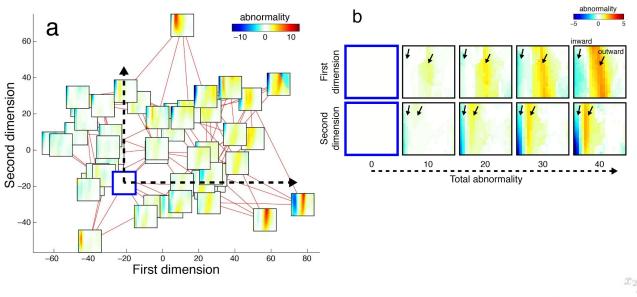


Duchateau et al. Med Image Anal 2012

Estimated embeddings

(low-dimensional) embedding: linear non-linear

➔ Isomap

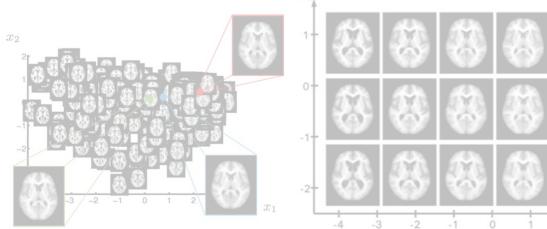


ex: disease evolution (cardiac velocity patterns)

Duchateau et al. Med Image Anal 2012

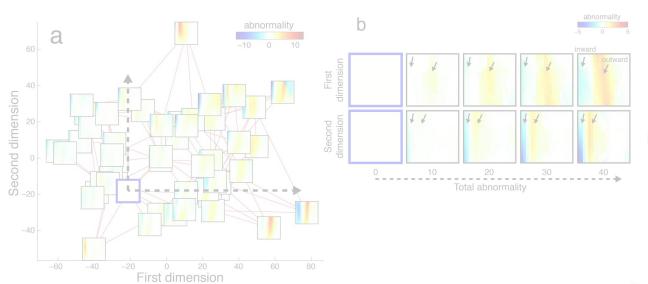
ex: preprocessing for regression (brain images)

Gerber et al. Med Image Anal 2010



(low-dimensional) embedding: linear non-linear

➔ Isomap

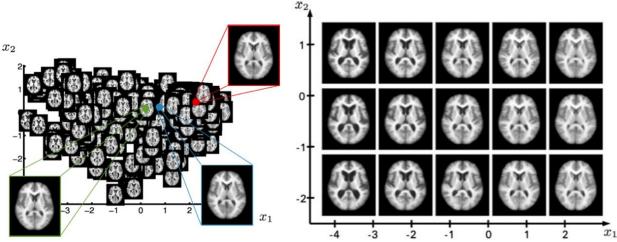


ex: disease evolution (cardiac velocity patterns)

Duchateau et al. Med Image Anal 2012

ex: preprocessing for regression (brain images)

Gerber et al. Med Image Anal 2010



(low-dimensional) embedding: linear non-linear

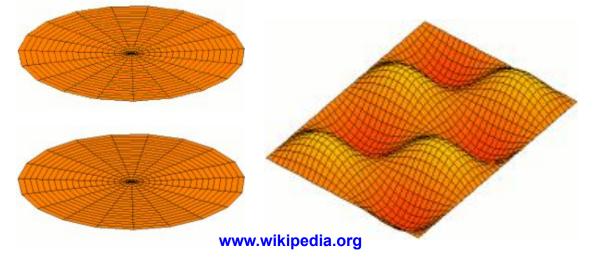
→ Laplacian eigenmaps

Belkin & Niyogi Neur Comput 2003

<u>Idea</u> = diagonalize the graph Laplacian

$$\hat{\mathbf{Y}} = \operatorname*{argmin}_{\mathbf{Y}} \sum_{i,j} w_{ij} \| \mathbf{y}_i - \mathbf{y}_j \|^2 = \operatorname*{argmin}_{\mathbf{Y}} \mathbf{Y}^T \mathbf{L} \mathbf{Y}$$

Constraint: $\mathbf{Y}^T \mathbf{D} \mathbf{Y} = 1$
Graph Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{W}$



(low-dimensional) embedding: linear non-linear

→ Laplacian eigenmaps

Belkin & Niyogi Neur Comput 2003

Idea = diagonalize the graph Laplacian

$$\hat{\mathbf{Y}} = \underset{\mathbf{Y}}{\operatorname{argmin}} \sum_{i,j} \underbrace{w_{ij} \| \mathbf{y}_i - \mathbf{y}_j \|^2}_{\mathbf{Y}} = \underset{\mathbf{Y}}{\operatorname{argmin}} \mathbf{Y}^T \mathbf{L} \mathbf{Y}$$
Constraint:
$$\mathbf{Y}^T \mathbf{D} \mathbf{Y} = 1$$
Graph Laplacian
$$\mathbf{L} = \mathbf{D} - \mathbf{W}$$

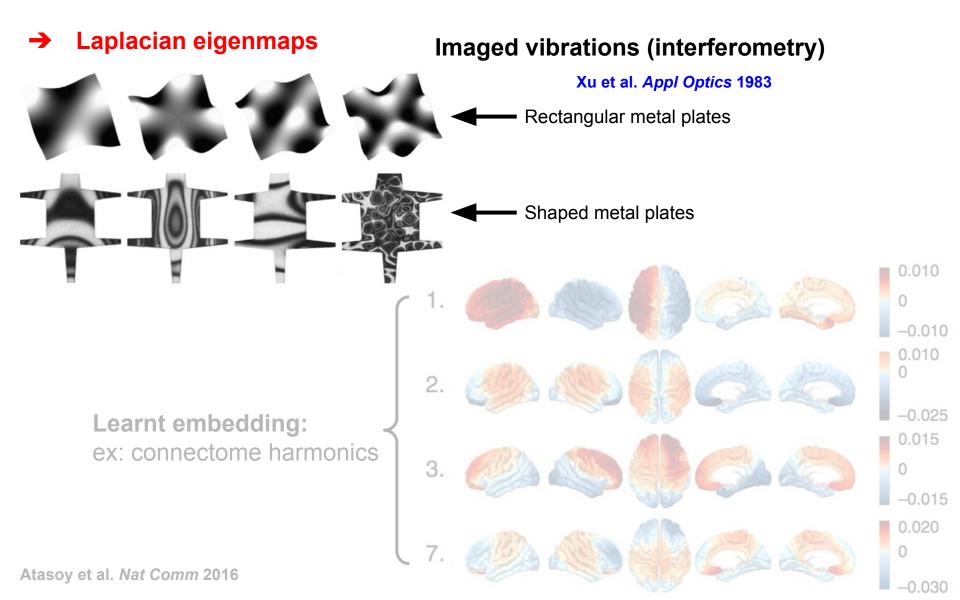
Parameter = kernel bandwidth

$$w_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-rac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}
ight)$$

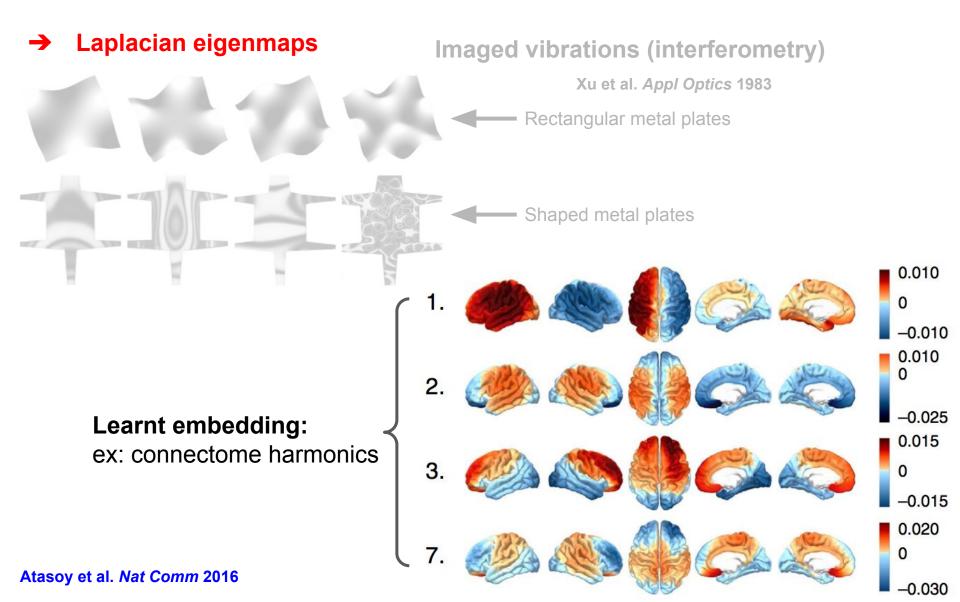
- Close inputs - Far inputs

→ $w_{ij} \approx 1$ → close outputs → $w_{ij} \approx 0$ → minor influence

(low-dimensional) embedding: linear non-linear



(low-dimensional) embedding: linear non-linear



(low-dimensional) embedding: linear non-linear

→ Laplacian eigenmaps

Beware ! meaningful variations **not always ordered** as dimensions (1,2,3,...)

→ Careful interpretation vs. the **spread of the data space** (Nadler et al. 2008)

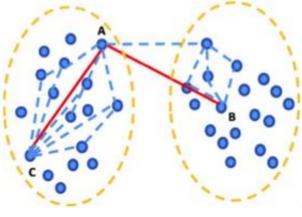
ex: Spiral with varying height vs. length



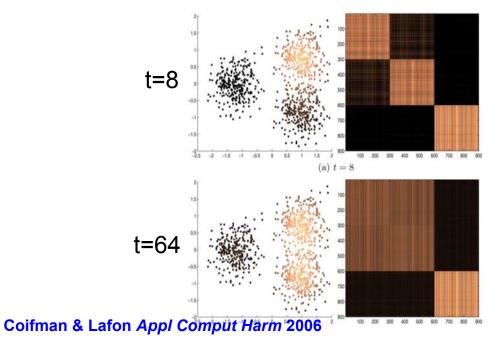
(low-dimensional) embedding: linear non-linear

To go further	Works on	
Laplacian eigenmaps	Graph Laplacian L = D-W	Belkin & Niyogi Neur Comput 2003
Diffusion maps	Normalized Laplacian P	Coifmain & Lafon Appl Comput Harm 2006

 P_{ii} Probability of moving from sample *i* to sample *j* in *t* steps



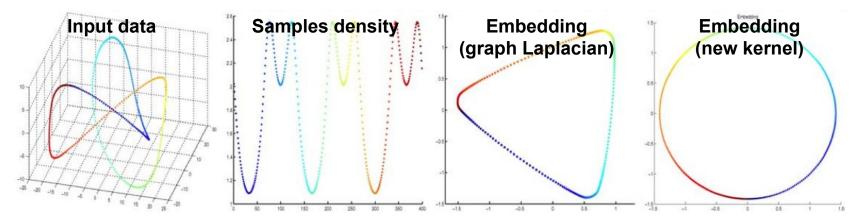
Liu et al. CVIU 2012



(low-dimensional) embedding: linear non-linear

To go further	Works on	
Laplacian eigenmaps	Graph Laplacian L = D-W	Belkin & Niyogi Neur Comput 2003
Diffusion maps	Normalized Laplacian P	Coifmain & Lafon Appl Comput Harm 2006

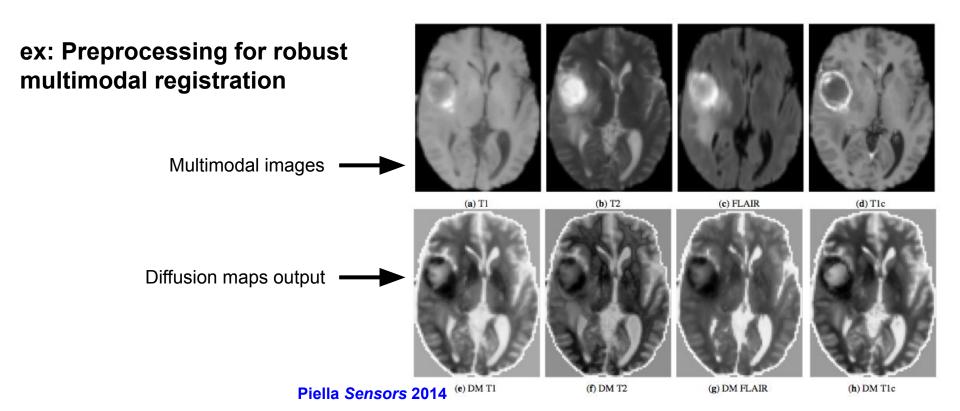
Why? Robustness to non-uniform density of the samples (critical in real-life applications !!!)



Coifman & Lafon Appl Comput Harm 2006

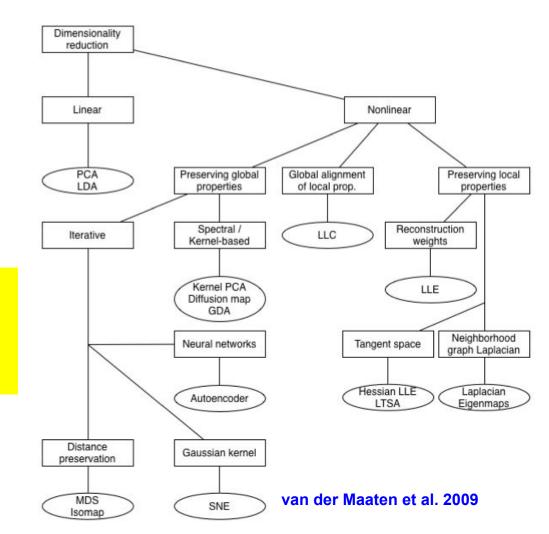
(low-dimensional) embedding: linear non-linear

To go further	Works on	
Laplacian eigenmaps	Graph Laplacian L = D-W	Belkin & Niyogi Neur Comput 2003
Diffusion maps	Normalized Laplacian P	Coifmain & Lafon Appl Comput Harm 2006



(low-dimensional) embedding: linear non-linear

... and many other algorithms !



Depends on:

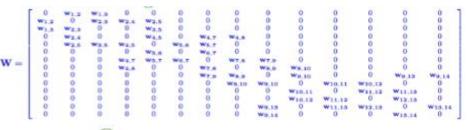
- Your knowledge on data
- Your objectives (distance=?)

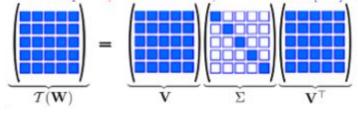
(low-dimensional) embedding: linear non-linear

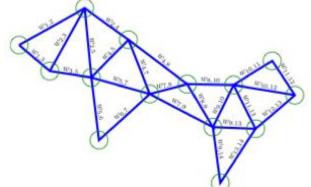
→ Unified framework?

(low-dimensional) embedding: linear non-linear

→ Unified framework?







Method	Operator/Matrix	Preserved	Objective Function
PCA	Covariance matrix	Variance of the dataset / Euclidean distances between data points	$\mathbf{u}^{T}\Sigma\mathbf{u}$
Laplacian Eigenmaps	Graph Laplacian	Distances within the local neighbourhood of each data point	$\mathbf{u}^{T}L\mathbf{u}$
ISOMAP	Geodesic distance matrix	Geodesic distances between data points	$\mathbf{u}^{ op} D_G \mathbf{u}$
LLE	Reconstruction weights	Reconstruction weights within the local neighbourhood of each data point	$\mathbf{u}^{ op}W\mathbf{u}$

Atasoy & Mateus MICCAI tutorial 2011

(low-dimensional) embedding: linear non-linear

→ Unified framework Yan et al. *IEEE PAMI* 2007

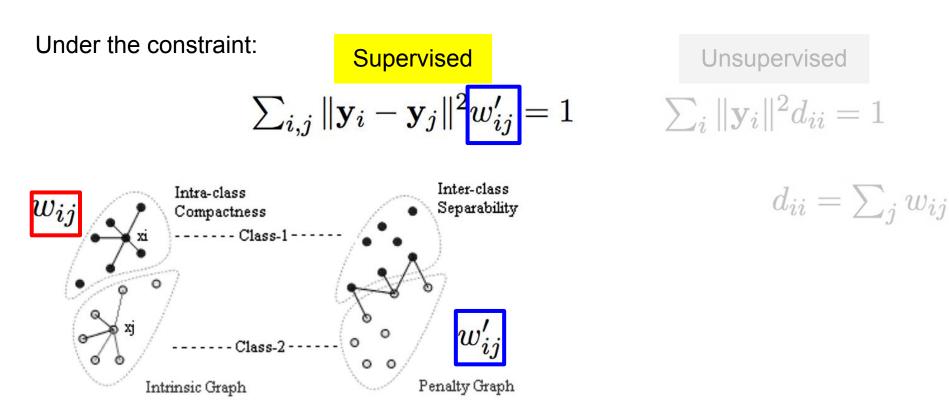
$$\hat{\mathbf{Y}} = \underset{\mathbf{Y}}{\operatorname{argmin}} \sum_{i,j} w_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2 = \underset{\mathbf{Y}}{\operatorname{argmin}} \mathbf{Y}^T \mathbf{L} \mathbf{Y}$$

(cf. Laplacian eigenmaps...)

(low-dimensional) embedding: linear non-linear

→ Unified framework Yan et al. *IEEE PAMI* 2007

$$\hat{\mathbf{Y}} = \underset{\mathbf{Y}}{\operatorname{argmin}} \sum_{i,j} w_{ij} \| \mathbf{y}_i - \mathbf{y}_j \|^2 = \underset{\mathbf{Y}}{\operatorname{argmin}} \mathbf{Y}^T \mathbf{L} \mathbf{Y}$$



(low-dimensional) embedding: linear non-linear

→ Unified framework Yan et al. *IEEE PAMI* 2007

$$\hat{\mathbf{Y}} = \operatorname*{argmin}_{\mathbf{Y}} \sum_{i,j} w_{ij} \| \mathbf{y}_i - \mathbf{y}_j \|^2 = \operatorname*{argmin}_{\mathbf{Y}} \mathbf{Y}^T \mathbf{L} \mathbf{Y}$$

Under the constraint:

Supervised

Unsupervised

$$\sum_{i,j} \|\mathbf{y}_i - \mathbf{y}_j\|^2 w'_{ij} = 1$$
 $\sum_i \|\mathbf{y}_i\|^2 d_{ii} = 1$

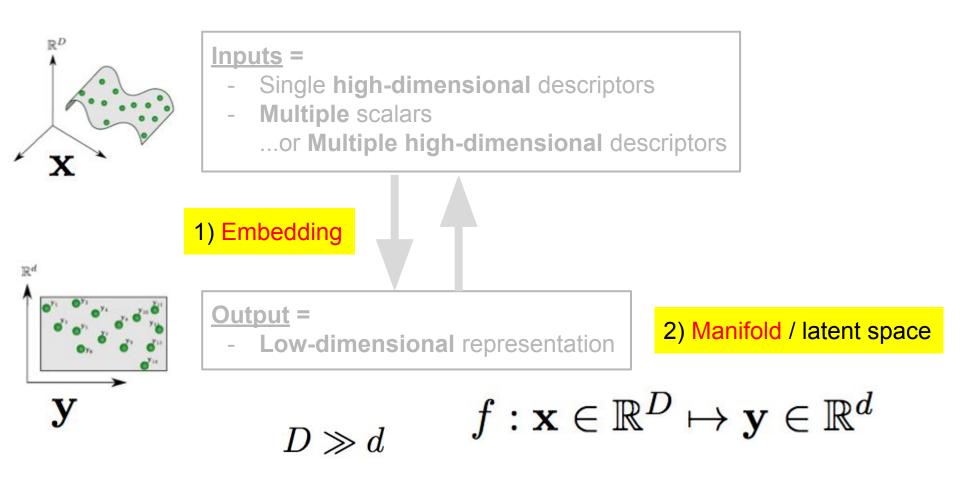
$$d_{ii} = \sum_j w_{ij}$$

(low-dimensional) embedding: linear non-linear

→ Back to our pipeline...

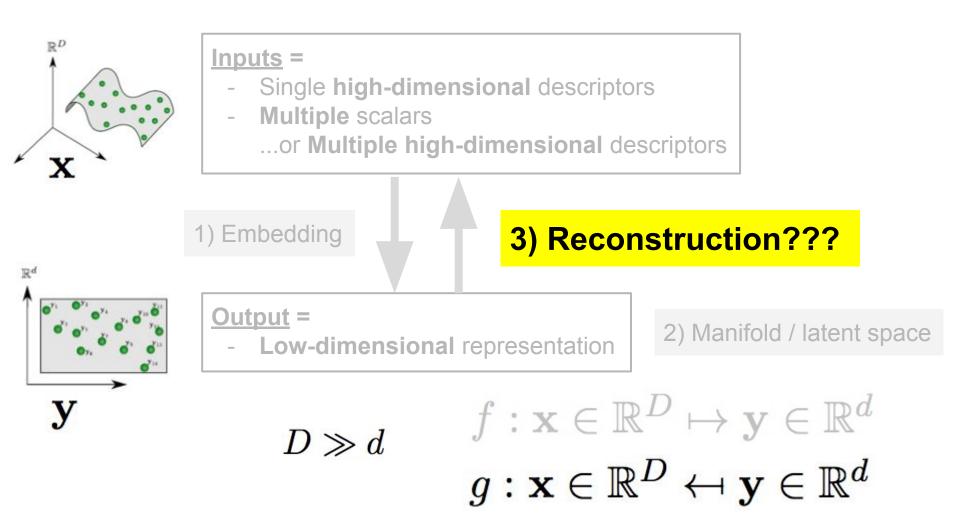
(low-dimensional) embedding: linear non-linear

→ Back to our pipeline...



(low-dimensional) embedding: linear non-linear

→ Back to our pipeline...



(low-dimensional) embedding: linear non-linear

→ Reconstruction

Analytical formula exists?

ex: PCA = linear change of basis $\Sigma = \mathbf{P} \mathbf{D} \mathbf{P}^T$

 $\mathbf{x} = \mathbf{P}\mathbf{y}$ $\mathbf{y} = \mathbf{P}^T\mathbf{x}$

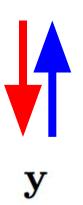
(low-dimensional) embedding: linear non-linear

Reconstruction

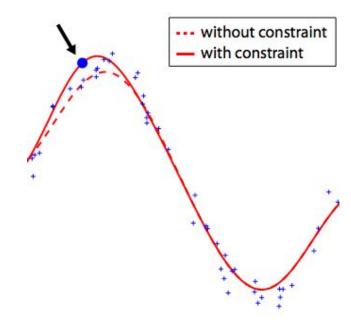
Analytical formula exists?

... in many cases, no ! = out-of-sample extension problem

X

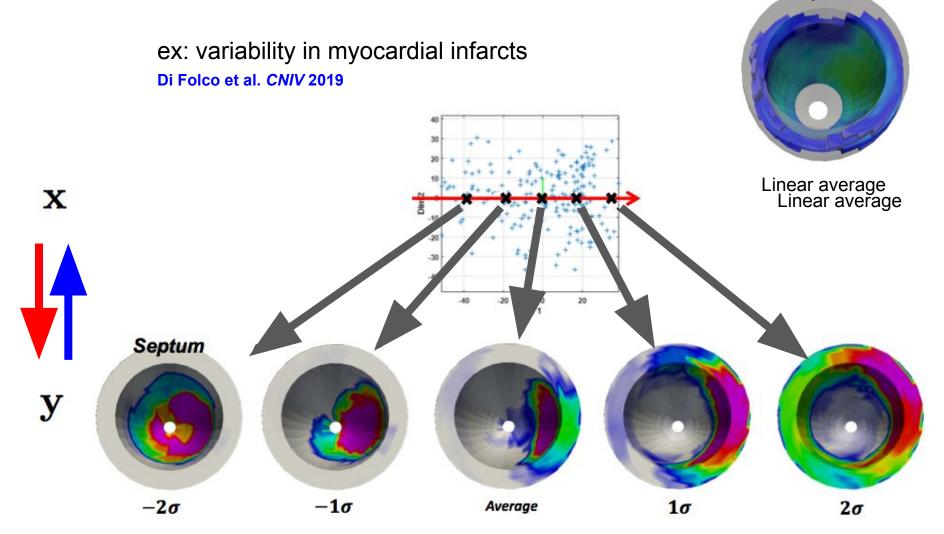


- > Possibility = **kernel** interpolation:
 - $\mathbf{x} = \sum_{i=1}^{N} K'(\mathbf{y}, \mathbf{y}_i) \mathbf{c}_i$
 - $\mathbf{C} = (\mathbf{K'} + \mathbf{I}/\gamma)^{-1}\mathbf{x}$



(low-dimensional) embedding: linear non-linear

Reconstruction



Septum

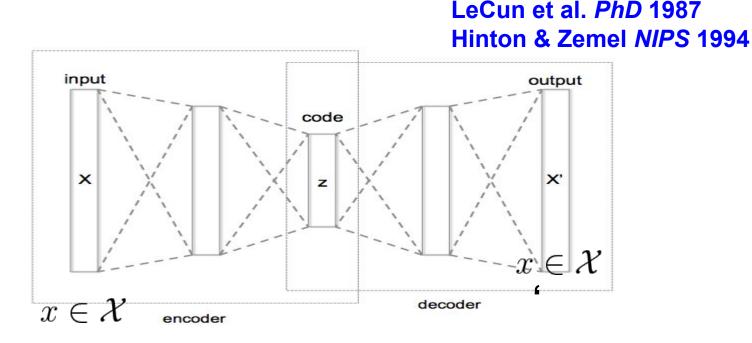
(low-dimensional) embedding: linear non-linear

→ Autoencoders (unsupervised learning as supervised learning)

LeCun et al. *PhD* 1987 Hinton & Zemel *NIPS* 1994

(low-dimensional) embedding: linear non-linear

→ Autoencoders (unsupervised learning as supervised learning)



Simultaneously learn, in a supervised manner

- an encoder that maps the input into a shorter code
- a **decoder** that maps back a code into an input

Self supervision = minimize the reconstruction error

(low-dimensional) embedding: linear non-linear

→ Autoencoders (unsupervised learning as supervised learning)

LeCun et al. *PhD* 1987 Hinton & Zemel *NIPS* 1994

Extensions and other approaches

- Denoising Autoencoders, Variational Autoencoders (VAE), Conditional VAE, ...
- Generative Adversarial Networks (GAN),
 - CGAN, WGAN, ..., "gan zoo"
 - VAE-GAN, CVAE-GAN, ...
- Self supervised learning

Summary

→ Unsupervised learning, depends on:

- Your data problem: labels / no labels, ...
- Your initial question: clustering, outliers, …

→ Learning a representation is key, depends on:

- Linear / non-linear
- Objectives:

	Embedding space	Reconstruction
Manifold learning	Meaningful distances between <i>input</i> samples ~ Euclidean distance between <i>output</i> coordinates	Interpolation?
Auto-encoders	Limited statistical meaningi	Optimized encoding/decoding

Summary

Validation not straightforward:

- No labels !
- vs. method's way of working? (ex: short-circuit)
- vs. application's objectives? (ex: risk analysis, knowledge discovery)

→ Still <u>under-used</u> vs. supervised learning

- Promising for medical problems !
- Rising **semi-supervised** learning...

